Advertisement

Witness and Counterexample Automata for ACTL

  • Robert Meolic
  • Alessandro Fantechi
  • Stefania Gnesi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3235)

Abstract

Witnesses and counterexamples produced by model checkers provide a very useful source of diagnostic information. They are usually returned in the form of a single computation path along the model of the system. However, a single computation path is not enough to explain all reasons of a validity or a failure. Our work in this area is motivated by the application of action-based model checking algorithms to the test case generation for models formally specified with a CCS-like process algebra. There, only linear and finite witnesses and counterexamples are useful and for the given formula and model an efficient representation of the set of witnesses (counterexamples) explaining all reasons of validity (failure) is needed. This paper identifies a fragment of action computation tree logic (ACTL) that can be handled in this way. Moreover, a suitable form of witnesses and counterexamples is proposed and witness and counterexample automata are introduced, which are finite automata recognizing them. An algorithm for generating such automata is given.

Keywords

Model Check Regular Language Label Transition System Computation Path Test Case Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Buccafurri, F., Eiter, T., Gottlob, G., Leone, N.: On ACTL formulas having linear counterexamples. Journal of computer and syst. sciences 62(3), 463–515 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model Checking and Abstraction. ACM Transaction on Programming Languages and Systems 5(16), 1512–1542 (1994)CrossRefGoogle Scholar
  3. 3.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic Verification of Finite State Concurrent Systems using Temporal Logic Specifications. ACM Transaction on Programming Languages and Systems 8(2), 244–263 (1986)CrossRefzbMATHGoogle Scholar
  4. 4.
    Clarke, E.M., Jha, S., Lu, Y., Veith, H.: Tree-like Counterexamples in Model Checking. In: 17th IEEE Symp. on Logic in Computer Science (LICS), pp. 19–29 (2002)Google Scholar
  5. 5.
    Copty, F., Irron, A., Weissberg, O., Kropp, N., Kamhi, G.: Efficient Debugging in a Formal Verification Environment. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, pp. 275–292. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Časar, A., Brezočnik, Z., Kapus, T.: Exploiting Symbolic Model Checking for Sensing Stuck-at Faults in Digital Circuits. Informacije MIDEM 32(3), 171–180 (2002)Google Scholar
  7. 7.
    Fantechi, A., Gnesi, S., Maggiore, A.: Enhancing test coverage by back-tracing model-checker counterexamples. In: Int. Workshop on Test and Analysis of Component Based Syst, TACOS (2004); to appear in Electronic Notes in Theoretical Computer ScienceGoogle Scholar
  8. 8.
    Geist, D., Farkas, M., Landver, A., Lichenstein, Y., Ur, S., Wolfsthal, Y.: Coverage- Directed Test Generation Using Symbolic Techniques. In: Srivas, M., Camilleri, A. (eds.) FMCAD 1996. LNCS, vol. 1166, pp. 143–158. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  9. 9.
    Glusman, M., Kamhi, G., Mador-Heim, S., Fraer, R., Vardi, M.: Multiple-Counterexample Guided Iterative Abstraction Refinement: An Industrial Evaluation. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 176–191. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Gurfinkel, A., Chechik, M.: Proof-Like Counter-Examples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 160–175. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Ho, P.H., Shiple, T., Harer, K., Kukula, J., Damiano, R., Bertacco, V., Taylor, J., Long, J.: Smart Simulation Using Collaborative Formal and Simulation Engines. In: Int. Conf. on Computer Aided Design, ICCAD (2000)Google Scholar
  12. 12.
    Maidl, M.: The Common Fragment of CTL and LTL. In: Proc. 41th Symp. on Foundations of Computer Science (FOCS), pp. 643–652 (2000)Google Scholar
  13. 13.
    De Nicola, R., Vaandrager, F.W.: Actions versus State Based Logics for Transition Systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  14. 14.
    Ratzaby, G., Ur, S., Wolfsthal, Y.: Coverability Analysis Using Symbolic Model Checking. In: Margaria, T., Melham, T.F. (eds.) CHARME 2001. LNCS, vol. 2144, p. 155. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Ratsaby, G., Sterin, B., Ur, S.: Improvements in Coverabiliy Analysis. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS, vol. 2391, p. 41. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© IFIP International Federation for Information Processing 2004

Authors and Affiliations

  • Robert Meolic
    • 1
  • Alessandro Fantechi
    • 2
  • Stefania Gnesi
    • 3
  1. 1.Faculty of Electrical Engineering and Computer ScienceUniversity of MariborMariborSlovenia
  2. 2.Dipartimento di Sistemi e InformaticaUniversità degli Studi di FirenzeFirenzeItaly
  3. 3.ISTI-CNRPisaItaly

Personalised recommendations