Advertisement

Towards a Temporal Extension of Spatial Allocation Modeling

  • Takeshi Shirabe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3234)

Abstract

Spatial allocation models represent decision processes of allocating discrete spatial units (e.g., land parcels and grid cells) to particular uses under the assumption that attributes of those units are unchanged over time and all decisions are made at one time. Given forecasts of spatial attributes, this assumption may be dropped, though spatial and temporal considerations will be highly interwoven and difficult to articulate in simple algebraic terms. This paper describes a systematic approach to analyzing and resolving this complexity in formulating time-dependent spatial allocation models. The implication of the paper is that geographic information systems can serve not only as devices to store and manage spatio-temporal data, but also as platforms to build spatio-temporal decision models.

Keywords

Spatial Unit Short Path Problem Temporal Extension Object Pair Temporal Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutella, M.G.: Minimum Time and Minimum Cost Path Problems in Street Networks with Traffic Lights. Transportation Science 36(3), 326–336 (2002)zbMATHCrossRefGoogle Scholar
  2. 2.
    Allen, J.F.: Maintaining Knowledge about Temporal Intervals. Communication of the ACM 26(11), 832–843 (1983)zbMATHCrossRefGoogle Scholar
  3. 3.
    Al-Taha, K.K., Barrera, R.: Temporal Data and GIS: An Overview. In: Proceedings of GIS/LIS 1990, pp. 244–254 (1990)Google Scholar
  4. 4.
    Chabini, I.: Discrete Dynamic Shortest Path Problems in Transportation Applications: Complexity and Algorithms with Optimal Run Time. Transportation Research Record 1645, 170-175 (1998)Google Scholar
  5. 5.
    Dahlin, B., Sallnäs, O.: Harvest Scheduling under Adjacency Constraints – A Case Study from the Swedish Sub-alpine Region. Scandinavian Journal of Forest Research 8, 281–290 (1993)CrossRefGoogle Scholar
  6. 6.
    Densham, P.J.: Integrating GIS and Spatial Modeling: Visual Interactive Modeling and Location Selection. Geographical Systems 1(3), 203–219 (1994)Google Scholar
  7. 7.
    Desaulniers, G., Villeneuve, D.: The Shortest Path Problem with Time Windows and Linear Waiting Costs. Transportation Science 34(3), 312–319 (2000)zbMATHCrossRefGoogle Scholar
  8. 8.
    Diamond, J.T., Wright, J.R.: Design of an Integrated Spatial Information System for Multiobjective Land-use Planning. Environment and Planning B 15(2), 205–214 (1988)CrossRefGoogle Scholar
  9. 9.
    Egenhofer, M., Franzosa, R.: Point-Set Topological Spatial Relations. International Journal of Geographical Information Systems 5(2), 161–174 (1991)CrossRefGoogle Scholar
  10. 10.
    Frank, A.U., Raper, J., Cheylan, J.P.: Life and Motion of Socio-Economic Units. Taylor & Francis, London (2001)Google Scholar
  11. 11.
    Freksa, C.: Conceptual neighborhood and its role in temporal and spatial reasoning. In: Singh, M., Travé-Massuyès, L. (eds.) Decision Support Systems and Qualitative Reasoning, pp. 181–187. North-Holland, Amsterdam (1991)Google Scholar
  12. 12.
    Goodchild, M.F.: Towards an Enumeration and Classification of GIS Functions. In: Proceedings, International Geographic Information Systems (IGIS) Symposium: The Research Agenda, NASA, Washington, DC, vol. 2, pp. 67–77 (1988)Google Scholar
  13. 13.
    Jason, B.N.: Dynamic Traffic Assignment for Urban Road Networks. Transportation Research B 25(2/3), 143–161 (1991)CrossRefGoogle Scholar
  14. 14.
    Johnson, K.N., Scheurman, H.L.: Techniques for Prescribing Optimal Timber Harvest and Investment under Different Objectives: Discussion and Synthesis. Forest Science Monograph 18 (1977)Google Scholar
  15. 15.
    Kaufman, D.E., Nonis, J., Smith, R.L.: A Mixed Integer Linear Programming Model for Dynamic Route Guidance. Transportation Research B 32(6), 431–440 (1998)CrossRefGoogle Scholar
  16. 16.
    Kirby, M.W., Hager, W.A., Wong, P.: Simultaneous Planning of Wildland Management and Transportation Alternatives. In: Kallio, M., Andersson, A.E., Seppala, R., Morgan, A. (eds.) Systems Analysis in Forestry and Forest Industries, vol. 21, pp. 371–387. North- Holland/TIMS Studies in Management. Elsevier Scientific Publishing Co., New York (1986)Google Scholar
  17. 17.
    Langran, G.: Time in Geographic Information Systems. Taylor & Francis, London (1992)Google Scholar
  18. 18.
    McDill, M.E., Rebain, S., Braze, J.: Harvest Scheduling with Area-Based Adjacency Constraints. Forest Science 48(4), 631–642 (2002)Google Scholar
  19. 19.
    Merchant, D.K., Nemhauser, G.L.: A Model and an Algorithm for the Dynamic Traffic Assignment Problems. Transportation Science 12(3), 183–207 (1978)CrossRefGoogle Scholar
  20. 20.
    Miller, H.J.: Measuring Space-Time Accessibility Benefits within Transportation Networks: Basic Theory and Computational Methods. Geographical Analysis 31(2), 187–212 (1999)CrossRefGoogle Scholar
  21. 21.
    Miller, H.J., Wu, Y.-H.: GIS Software for Measuring Space-Time Accessibility in Transportation Planning and Analysis. GeoInformatica 4(2), 141–159 (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Murray, A.T.: Spatial Restrictions in Harvest Scheduling. Forest Science 45(1), 45–52 (1999)Google Scholar
  23. 23.
    Nelson, J., Brodie, J.D.: Comparison of a Random Search Algorithm and Mixed Integer Programming for Solving Area-based Forest Plans. Canadian Journal of Forest Research 20, 934–942 (1990)CrossRefGoogle Scholar
  24. 24.
    Nyerges, T.: Coupling GIS and Spatial Analytic Models. In: Proceedings, 5th International Spatial Data Handling Symposium, Charleston, SC, pp. 534–543 (1992)Google Scholar
  25. 25.
    O’Hare, A.J., Faaland, B.H., Bare, B.B.: Spatially Constrained Timber Harvest Scheduling. Canadian Journal of Forest Research 19, 715–724 (1989)CrossRefGoogle Scholar
  26. 26.
    Peuquet, D.J.: Time in GIS and Geographical Databases. In: Longley, P.A., Goodchild, M.F., Maguire, D.J., Rhind, D.W. (eds.) Geographical Information, 2nd edn. SystemsPrinciples and Technical Issues, vol. 1, pp. 91–103. John Wiley & Sons, New York (1999)Google Scholar
  27. 27.
    Shirabe, T.: Modeling Topological Properties of a Raster Region for Spatial Optimization. In: Proceedings, 11th International Symposium on Spatial Data Handling, Leicester, UK (2004)Google Scholar
  28. 28.
    Shirabe, T., Tomlin, C.D.: Decomposing Integer Programming Models for Spatial Allocation. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 300–312. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Snyder, S., ReVelle, C.: Temporal and Spatial Harvesting of Irregular Systems of Parcels. Canadian Journal of Forest Research 26, 1079–1088 (1996)CrossRefGoogle Scholar
  30. 30.
    Taylor, P.J.: Distances within Shapes: An Introduction to a Family of Finite Frequency Distributions. Discussion paper, No. 16, Department of Geography, University of Iowa, Iowa City, IA, 1-20 (1970)Google Scholar
  31. 31.
    Weintraub, A., Barahona, F., Epstein, R.: A Column Generation Algorithm for Solving General Forest Planning Problems with Adjacency Constraints. Forest Science 40(1), 142–161 (1994)Google Scholar
  32. 32.
    Weber, E.S.: Systems to Think with: A Response to “A Vision for Decision Support Systems. Journal of Management Information Systems 2(4), 85–97 (1986)Google Scholar
  33. 33.
    Williams, J.C.: A Zero-One Programming Model for Contiguous Land Acquisition. Geographical Analysis 34(4), 330–349 (2002)CrossRefGoogle Scholar
  34. 34.
    Williams, J.C.: Convex Land Acquisition with Zero-One Programming. Environment and Planning B 30(2), 255–270 (2003)CrossRefGoogle Scholar
  35. 35.
    Yuan, M.: Modeling Semantical, Temporal, and Spatial Information in Geographic Information Systems. In: Craglia, M., Couclelis, H. (eds.) Geographic Information Research: Bridging the Atlantic, pp. 334–347. Taylor & Francis, London (1996)Google Scholar
  36. 36.
    Ziliaskopoulos, A.K., Mahmassani, H.S.: A Note on Least Time Path Computation Considering Delays and Prohibitions for Intersection. Transportation Research B 30(5), 359–367 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Takeshi Shirabe
    • 1
  1. 1.Institute for GeoinformationTechnical University of ViennaViennaAustria

Personalised recommendations