SisHiTra : A Hybrid Machine Translation System from Spanish to Catalan

  • José R. Navarro
  • Jorge González
  • David Picó
  • Francisco Casacuberta
  • Joan M. de Val
  • Ferran Fabregat
  • Ferran Pla
  • Jesús Tomás
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3230)

Abstract

In the current European scenario, characterized by the coexistence of communities writing and speaking a great variety of languages, machine translation has become a technology of capital importance. In areas of Spain and of other countries, coofficiality of several languages implies producing several versions of public information. Machine translation between all the languages of the Iberian Peninsula and from them into English will allow for a better integration of Iberian linguistic communities among them and inside Europe. The purpose of this paper is to show a machine translation system from Spanish to Catalan that deals with text input. In our approach, both deductive (linguistic) and inductive (corpus-based) methodologies are combined in an homogeneous and efficient framework: finite-state transducers. Some preliminary results show the interest of the proposed architecture.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halteren, H.V., Zavrel, J., Daelemans, W.: Improving accuracy in word class tagging through the combination of machine learning systems. Computational Linguistics 27, 199–229 (2001)CrossRefGoogle Scholar
  2. 2.
    Pla, F., Molina, A.: Improving part-of-speech tagging using lexicalized hmms. Natural Language Engineering 10, 167–189 (2004)CrossRefGoogle Scholar
  3. 3.
    Roche, E., Schabes, Y.: Deterministic part-of-speech tagging with finite-state transducers. Computational Linguistics 21, 227–253 (1995)Google Scholar
  4. 4.
    Aguirre, E., Rigau, G.: Word sense disambiguation using conceptual density. In: COLING (1996)Google Scholar
  5. 5.
    Ide, N., Véronis, J.: Word sense disambiguation: The state of the art. Computational Linguistics 24, 1–40 (1998)Google Scholar
  6. 6.
    Karttunen, L.: Finite-state lexicon compiler, vol. 1, pp. 406–411 (1994)Google Scholar
  7. 7.
    Roche, E.: Finite-state transducers: parsing fre and frozen sentences. In: Kornai, A. (ed.) Proceedings of the ECAI 1996 Workshop on Extended Finite State Models of Language, pp. 52–57 (1996)Google Scholar
  8. 8.
    Roche, E., Schabes, Y.: Finite-state language processing, pp. 1–65. MIT Press, Cambridge (1997)Google Scholar
  9. 9.
    Mohri, M.: Finite-state transducers in language and speech processing. Computational Linguistics 23 (1997)Google Scholar
  10. 10.
    Mohri, M., Pereira, F., Riley, M.: The design principles of a weighted finite-state transducer library. Theoretical Computer Science 231, 17–32 (2000)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Oflazer, K.: Error-tolerant finite-state recognition with applications to morphological analysis and spelling correction. Computational Linguistics 22, 73–89 (1996)Google Scholar
  12. 12.
    Canals, R., Esteve, A., Garrido, A., Guardiola, M., Iturraspe, A., Montserrat, S., Pastor, H., Pérez, P., Forcada, M.L.: The spanish-catalan machine translation system internostrum. In: MT Summit VIII: Machine Translation in the Information Age, pp. 73–76 (2001)Google Scholar
  13. 13.
    Sanchis, A., Picó, D., del Val, J., Fabregat, F., Tomás, J., Pastor, M., Casacuberta, F., Vidal, E.: A morphological analyser for machine translation based on finite-state transducers. In: MT Summit VIII: Machine Translation in the Information Age, pp. 305–309 (2001)Google Scholar
  14. 14.
    Viterbi, A.: Error bounds for convolutional codes and an asymtotically optimal decoding algorithm. IEEE Transactions on Information Theory, 260–269 (1967)Google Scholar
  15. 15.
    Molina, A., Pla, F., Moreno, L., Prieto, N.: Apoln: A partial parser of unrestricted text. In: Proceedings of 5th Conference on Computational Lexicography and Text Research COMPLEX 1999, Pecs, Hungary, pp. 101–108 (1999)Google Scholar
  16. 16.
    Carmona, J., Cervell, S., Màrquez, L., Martí, M., Padró, L., Placer, R., Rodríguez, H., Taulé, M., Turmo, J.: An environment for morphosyntactic processing of unrestricted spanish text. In: Proceedings of the 1st International Conference on Language Resources and Evaluation, LREC, Granada, Spain, pp. 915–922 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • José R. Navarro
    • 1
  • Jorge González
    • 1
  • David Picó
    • 1
  • Francisco Casacuberta
    • 1
  • Joan M. de Val
    • 2
  • Ferran Fabregat
    • 2
  • Ferran Pla
    • 3
  • Jesús Tomás
    • 4
  1. 1.Instituto Tecnológico de InformáticaUniversidad Politécnica de ValenciaSpain
  2. 2.Servei de Normalització LingüísticaUniversitat de ValènciaSpain
  3. 3.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaSpain
  4. 4.Departamento de ComunicacionesUniversidad Politécnica de ValenciaSpain

Personalised recommendations