Towards a Logical Analysis of Biochemical Pathways

  • Patrick Doherty
  • Steve Kertes
  • Martin Magnusson
  • Andrzej Szalas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3229)

Abstract

Biochemical pathways or networks are generic representations used to model many different types of complex functional and physical interactions in biological systems. Models based on experimental results are often incomplete, e.g., reactions may be missing and only some products are observed. In such cases, one would like to reason about incomplete network representations and propose candidate hypotheses, which when represented as additional reactions, substrates, products, would complete the network and provide causal explanations for the existing observations.

In this paper, we provide a logical model of biochemical pathways and show how abductive hypothesis generation may be used to provide additional information about incomplete pathways. Hypothesis generation is achieved using weakest and strongest necessary conditions which represent these incomplete biochemical pathways and explain observations about the functional and physical interactions being modeled. The techniques are demonstrated using metabolism and molecular synthesis examples.

Keywords

Abduction biochemical pathways hypotheses generation weakest sufficient and strongest necessary conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bryant, C., Muggleton, S., Oliver, S., Kell, D., Reiser, P., King, R.: Combining inductive logic programming, active learning and robotics to discover the function of genes. Linkoping Electronic Articles in Computer and Information Science 6 (2001)Google Scholar
  2. 2.
    Deville, Y., Gilbert, D., van Helden, J., Wodak, S.: An overviewof data models for the analysis of biochemical pathways. Briefings in Bioinformatics 4, 246–259 (2003)CrossRefGoogle Scholar
  3. 3.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18, 297–336 (1997)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Gabbay, D.M., Ohlbach, H.J.: Quantifier elimination in second-order predicate logic. In: Nebel, B., Rich, C., Swartout, W. (eds.) Principles of Knowledge Representation and Reasoning, KR 1992, pp. 425–435 (1992)Google Scholar
  5. 5.
    Nonnengart, A., Szałas, A.: A fixpoint approach to second-order quantifier elimination with applications to correspondence theory. In: Orłowska, E. (ed.) Logic atWork: Essays Dedicated to the Memory of Helena Rasiowa, pp. 307–328. Springer Physica-Verlag (1998)Google Scholar
  6. 6.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Computing strongest necessary and weakest sufficient conditions of first-order formulas. In: International Joint Conference on AI (IJCAI 2001), pp. 145–151 (2001)Google Scholar
  7. 7.
    Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closedworld reasoning in rough knowledge databases. In: Pal, S., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words. Cognitive Technologies, pp. 219–250. Springer, Heidelberg (2003)Google Scholar
  8. 8.
    Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In: Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine biocham. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 172–191. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Doherty, P., Kertes, S., Magnusson, M., Szałas, A.: Towards a logical analysis of biochemical pathways (extended abstract). In: Proceedings of the European Conference on Artificial Intelligence ECAI 2004 (2004) (to appear)Google Scholar
  11. 11.
    Lin, F.: On strongest necessary and weakest sufficient conditions. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Principles of Knowledge Representation and Reasoning, KR’2000, pp. 167–175 (2000)Google Scholar
  12. 12.
    Doherty, P., Łukaszewicz, W., Szałas, A.: A reduction result for circumscribed semi-Horn formulas. Fundamenta Informaticae 28, 261–271 (1996)MATHMathSciNetGoogle Scholar
  13. 13.
    Doherty, P., Łukaszewicz, W., Szałas, A.: General domain circumscription and its effective reductions. Fundamenta Informaticae 36, 23–55 (1998)MATHMathSciNetGoogle Scholar
  14. 14.
    Pine, S., Hendrickson, J., Cram, D., Hammond, G.: Organic Chemistry. McGraw-Hill, Inc., New York (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patrick Doherty
    • 1
  • Steve Kertes
    • 1
  • Martin Magnusson
    • 1
  • Andrzej Szalas
    • 1
  1. 1.Department of Computer and Information ScienceLinköpingSweden

Personalised recommendations