Complexity in Value-Based Argument Systems

  • Paul E. Dunne
  • Trevor Bench-Capon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3229)


We consider a number of decision problems formulated in value-based argumentation frameworks (VAFs), a development of Dung’s argument systems in which arguments have associated abstract values which are considered relative to the orderings induced by the opinions of specific audiences. In the context of a single fixed audience, it is known that those decision questions which are typically computationally hard in the standard setting admit efficient solution methods in the value-based setting. In this paper we show that, in spite of this positive property, there still remain a number of natural questions that arise solely in value-based schemes for which there are unlikely to be efficient decision processes.


Decision Problem Critical Pair Positive Instance Argumentation Framework Argument System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Annals of Math. and Artificial Intelligence 34, 197–215 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bench-Capon, T.J.M.: Representation of Case Law as an Argumentation Framework. In: Bench-Capon, T., Daskalopoulu, A., Winkels, R. (eds.) Legal Knowledge and Information Systems, pp. 103–112. IOS Press, Amsterdam (2002)Google Scholar
  3. 3.
    Bench-Capon, T.J.M.: Agreeing to differ: modelling persuasive dialogue between parties with different values. Informal Logic 22(3) (2003)Google Scholar
  4. 4.
    Bench-Capon, T.J.M.: Persuasion in Practical Argument UsingValue Based Argumentation Frameworks. Journal of Logic and Computation 13(3), 429–448 (2003)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: Anabstract, argumentation-theoretic approach to default reasoning. Artificial Intelligence 93(1-2), 63–101 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Christie, G.: The Notion of an Ideal Audience in Legal Argument. Kluwer Academic, Dordrecht (2000)Google Scholar
  7. 7.
    Dimopoulos, Y., Nebel, B., Toni, F.: Preferred arguments are harder to compute than stable extensions. In: Dean, T. (ed.) Proceedings of the 16th International Joint Conference on Artificial Intelligence (IJCAI 1999), vol. 1, pp. 36–43. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  8. 8.
    Dimopoulos, Y., Nebel, B., Toni, F.: Finding admissible and preferred arguments can be very hard. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) KR 2000: Principles of Knowledge Representation and Reasoning, pp. 53–61. Morgan Kaufmann, San Francisco (2000)Google Scholar
  9. 9.
    Dimopoulos, Y., Nebel, B., Toni, F.: On the compuational complexity of assumption-based argumentation by default reasoning. Artificial Intelligence 141, 57–78 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dimopoulos, Y., Torres, A.: Graph theoretical structures in logic programs and default theories. Theoretical Computer Science 170, 209–244 (1996)MATHMathSciNetGoogle Scholar
  11. 11.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and N-person games. Artificial Intelligence 77, 321–357 (1995)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Dunne, P.E., Bench-Capon, T.J.M.: Coherence in finite argument systems. Artificial Intelligence 141, 187–203 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Dunne, P.E., Bench-Capon, T.J.M.: Two party immediate response disputes: properties and efficiency. Artificial Intelligence 149, 221–250 (2003)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Dunne, P.E., Bench-Capon, T.J.M.: Identifying Audience Preferences in Legal and Social Domains. Technical Report, ULCS-04-010, Dept. of Computer Science, Univ. of Liverpool (2004) (to appear); Galindo, F., Takizawa, M., Traunmüller, R. (eds.): DEXA 2004. LNCS, vol. 3180. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Jakobovits, H., Vermeir, D.: Dialectic semantics for argumentation frameworks. In: Proceedings of the Seventh International Conference on Artificial Intelligence and Law (ICAIL 1999), ACM SIGART, June 1999, pp. 53–62. ACM Press, New York (1999)CrossRefGoogle Scholar
  16. 16.
    Papadimitriou, C.H., Yannakakis, M.: The complexity of facets (and some facets of complexity). In: Proceedings of the Fourteenth ACM Symposium on the Theory of Computing (STOC 1982), San Francisco, CA, pp. 255–260 (1982)Google Scholar
  17. 17.
    Perelman, C.: Justice, Law and Argument. Reidel, Dordrecht (1980)Google Scholar
  18. 18.
    Prakken, H.: Logical Tools for Modelling Legal Argument. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  19. 19.
    Searle, J.R.: Rationality in Action. MIT Press, Cambridge (2001)Google Scholar
  20. 20.
    Vreeswijk, G., Prakken, H.: Credulous and sceptical argument games for preferred semantics. In: Brewka, G., Moniz Pereira, L., Ojeda-Aciego, M., de Guzmán, I.P. (eds.) JELIA 2000. LNCS (LNAI), vol. 1919, pp. 224–238. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Paul E. Dunne
    • 1
  • Trevor Bench-Capon
    • 1
  1. 1.Dept. of Computer ScienceUniversity of LiverpoolLiverpoolUnited Kingdom

Personalised recommendations