Parallelization of an Adaptive Vlasov Solver

  • Olivier Hoenen
  • Michel Mehrenberger
  • Éric Violard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3241)


This paper presents an efficient parallel implementation of a Vlasov solver. Our implementation is based on an adaptive numerical scheme of resolution. The underlying numerical method uses a dyadic mesh which is particularly well suited to manage data locality. We have developed an adapted data distribution pattern based on a division of the computational domain into regions and integrated a load balancing mechanism which periodically redefines regions to follow the evolution of the adaptive mesh. Experimental results show the good efficiency of our code and confirm the adequacy of our implementation choices. This work is a part of the CALVI project.


Computational Domain Parallel Implementation Adaptive Mesh Vlasov Equation Load Balance Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Besse, N.: Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM J. Numer. Anal. 42, 350–382 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Birdshall, C.K., Langdon, A.B.: Plasmaphysics via computer simulation. McGraw-Hill, New York (1985)Google Scholar
  3. 3.
    Campos-Pinto, M., Mehrenberger, M.: Adaptive numerical resolution of the Vlasov equation submitted in Numerical methods for hyperbolic and kinetic problemsGoogle Scholar
  4. 4.
    Filbet, F.: Numerical Methods for the Vlasov equation ENUMATH 2001 ProceedingsGoogle Scholar
  5. 5.
    Gutnic, M., Paun, I., Sonnendrücker, E.: Vlasov simulations on an adaptive phase-space grid to appear in Comput. Phys. Comm.Google Scholar
  6. 6.
    Lawder, J.K., King, P.J.H.: Using Space-Filling Curves for Multi-dimensional Indexing. In: Jeffery, K., Lings, B. (eds.) BNCOD 2000. LNCS, vol. 1832, p. 20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Patra, A., Oden, J.T.: Problem decomposition for adaptive hp finite element methods. Computing Systems in Eng. 6 (1995)Google Scholar
  8. 8.
    Sonnendrücker, E., Filbet, F., Friedman, A., Oudet, E., Vay Vlasov, J.L.: Simulation of beams on a moving phase-space grid to appear in Comput. Phys. Comm.Google Scholar
  9. 9.
    Sonnendrücker, E., Roche, J., Bertrand, P., Ghizzo, A.: The Semi-Lagrangian Method for the Numerical Resolution of Vlasov Equations. J. Comput. Phys. 149, 201–220 (1998)CrossRefGoogle Scholar
  10. 10.
    Violard, E., Filbet, F.: Parallelization of a Vlasov Solver by Communication Overlapping. In: Proceedings PDPTA 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Olivier Hoenen
    • 1
  • Michel Mehrenberger
    • 2
  • Éric Violard
    • 1
  1. 1.Laboratoire LSIIT, Groupe ICPSUniversité Louis PasteurIllkirchFrance
  2. 2.Laboratoire IRMAUniversité Louis PasteurStrasbourgFrance

Personalised recommendations