An Approach to Evolutionary Robotics Using a Genetic Algorithm with a Variable Mutation Rate Strategy

  • Yoshiaki Katada
  • Kazuhiro Ohkura
  • Kanji Ueda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)

Abstract

Neutral networks, which occur in fitness landscapes containing neighboring points of equal fitness, have attracted much research interest in recent years. In recent papers [20,21], we have shown that, in the case of simple test functions, the mutation rate of a genetic algorithm is an important factor for improving the speed at which a population moves along a neutral network. Our results also suggested that the benefits of the variable mutation rate strategy used by the operon-GA [5] increase as the ruggedness of the landscapes increases. In this work, we conducted a series of computer simulations with an evolutionary robotics problem in order to investigate whether our previous results are applicable to this problem domain. Two types of GA were used. One was the standard GA, where the mutation rate is constant, and the other was the operon-GA, whose effective mutation rate at each locus changes independently according to the history of the genetic search. The evolutionary dynamics we observed were consistent with those observed in our previous experiments, confirming that the variable mutation rate strategy is also beneficial to this problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Harvey, I.: Artificial Evolution for Real Problems. In: Gomi, T. (ed.) Evolutionary Robotics: From Intelligent Robots to Artificial Life (ER 1997), AAI Books (1997)Google Scholar
  2. 2.
    Smith, T., Husbands, P., O’Shea, M.: Neutral Networks in an Evolutionary Robotics Search Space. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, pp. 136–145 (2001)Google Scholar
  3. 3.
    Thompson, A.: An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics. In: Proceedings of the First International Conference on Evolvable Systems: From Biology to Hardware, pp. 390–405 (1996)Google Scholar
  4. 4.
    Vassilev, V.K., Fogarty, T.C., Miller, J.F.: Information Characteristics and the Structure of Landscapes. Evolutionary Computation 8(1), 31–60 (2000)CrossRefGoogle Scholar
  5. 5.
    Ohkura, K., Ueda, K.: Adaptation in Dynamic Environment by Using GA with Neutral Mutations. International Journal of Smart Engineering System Design 2, 17–31 (1999)Google Scholar
  6. 6.
    Ebner, M., Langguth, P., Albert, J., Shackleton, M., Shipman, R.: On Neutral Networks and Evolvability. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation: CEC 2001, pp. 1–8. IEEE Press, Los Alamitos (2001)CrossRefGoogle Scholar
  7. 7.
    Knowles, J.D., Watson, R.A.: On the Utility of Redundant Encodings in Mutation-based Evolutionary Search. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 88–98. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Rothlauf, F., Goldberg, D.: Redundant Representations in Evolutionary Computation. Evolutionary Computation 11(4), 381–415 (2003)CrossRefGoogle Scholar
  9. 9.
    Kimura, M.: The Neutral Theory of Molecular Evolution. Cambridge University Press, New York (1983)CrossRefGoogle Scholar
  10. 10.
    Huynen, M., Stadler, P., Fontana, W.: Smoothness within Ruggedness: The Role of Neutrality in Adaptation. Proceedings of the National Academy of Science USA 93, 397–401 (1996)CrossRefGoogle Scholar
  11. 11.
    Reidys, C., Stadler, P., Schuster, P.: Generic Properties of Combinatory Maps - Neutral Networks of RNA Secondary Structures. Bulletin of Mathematical Biology 59, 339–397 (1997)MATHCrossRefGoogle Scholar
  12. 12.
    Harvey, I., Thompson, A.: Through the Labyrinth Evolution Finds aWay: A Silicon Ridge. In: Proceedings of the First International Conference on Evolvable Systems: From Biology to Hardware, pp. 406–422 (1996)Google Scholar
  13. 13.
    Smith, T., Husbands, P., Layzell, P., O’Shea, M.: Fitness Landscapes and Evolvability. Evolutionary Computation 10(1), 1–34 (2002)CrossRefGoogle Scholar
  14. 14.
    Nimwegen, E., Crutchfield, J., Mitchell, M.: Statistical Dynamics of the Royal Road Genetic Algorithm. Theoretical Computer Science 229(1), 41–102 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Barnett, L.: Netcrawling - Optimal Evolutionary Search with Neutral Networks. In: Proceedings of the 2001 IEEE Congress on Evolutionary Computation, pp. 30–37 (2001)Google Scholar
  16. 16.
    Eigen, M., McCaskill, J., Schuster, P.: The Molecular Quasi-species. Advances in Chemical Physics 75, 149–263 (1989)CrossRefGoogle Scholar
  17. 17.
    Barnett, L.: Tangled Webs: Evolutionary Dynamics on Fitness Landscapes with Neutrality. MSc. dissertation, School of Cognitive and Computing Sciences, Sussex University, UK (1997)Google Scholar
  18. 18.
    Nimwegen, E., Ctrutchfield, J.: Optimizing Epochal Evolutionary Search: Population-size Dependent Theory. SFI Working Paper 9810-090, Santa Fe Institute (1998)Google Scholar
  19. 19.
    Newman, M., Engelhardt, R.: Effect of Neutral Selection on the Evolution of Molecular Species. Proceedings of the Royal Society of London B 256, 1333–1338 (1998)CrossRefGoogle Scholar
  20. 20.
    Katada, Y., Ohkura, K., Ueda, K.: Tuning Genetic Algorithms for Problems Including Neutral Networks -The Simplest Case: The Balance Beam Function. In: Proceedings of the 7th Joint Conference on Information Sciences, pp. 1657–1660 (2003)Google Scholar
  21. 21.
    Katada, Y., Ohkura, K., Ueda, K.: Tuning Genetic Algorithms for Problems Including Neutral Networks -A More Complex Case: The Terraced NK Problem. In: Proceedings of the 7th Joint Conference on Information Sciences, pp. 1661–1664 (2003)Google Scholar
  22. 22.
    Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading (1989)MATHGoogle Scholar
  23. 23.
    Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT Press, Cambridge (1998)MATHGoogle Scholar
  24. 24.
    Katada, Y., Ohkura, K., Ueda, K.: Artificial Evolution of Pulsed Neural Networks on the Motion Pattern Classification System. In: Proceedings of 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation (CIRA), pp. 318–323 (2003)Google Scholar
  25. 25.
    Beer, R.: Toward the Evolution of Dynamical Neural Networks for Minimally Cognitive Behavior. In: Maes, P., Mataric, M., Meyer, J., Pollack, J., Wilson, S. (eds.) Proceedings of From Animals to Animats, vol. 4, pp. 421–429. MIT press, Cambridge (1996)Google Scholar
  26. 26.
    Floreano, D., Mattiussi, C.: Evolution of Spiking Neural Controllers. In: Gomi, T. (ed.) Evolutionary Robotics: From Intelligent Robots to Artificial Life (ER 2001). AAI Books, pp. 38–61. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Manderick, B., Weger, M., Spiessens, P.: The Genetic Algorithm and the Structure of the Fitness Landscape. In: Belew, R., Booker, B. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 143–150. Morgan Kaufmann, San Francisco (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yoshiaki Katada
    • 1
  • Kazuhiro Ohkura
    • 2
  • Kanji Ueda
    • 3
  1. 1.Graduate School of Science and TechnologyKobe UniversityKobeJapan
  2. 2.Faculty of EngineeringKobe UniversityKobeJapan
  3. 3.RACE (Research into Artifacts, Center for Engineering)The University of TokyoMeguroJapan

Personalised recommendations