Group Transport of an Object to a Target That Only Some Group Members May Sense

  • Roderich Groß
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)


This paper addresses the cooperative transport of a heavy object, called prey, towards a sporadically changing target location by a group of robots. The study is focused on the situation in which some robots are given the opportunity to localize the target, while the others (called the blind ones) are not. We propose the use of relatively simple robots capable of self-assembling into structures which pull or push the prey. To enable a blind robot to contribute to the group’s performance, it can locally perceive traction forces, and whether it is moving or not. The robot group is controlled in a distributed manner, using a modular control architecture. A collection of simple hand-coded and artificially evolved control modules is presented and discussed. For group sizes ranging from 2 to 16 and different proportions of blind robots within the group, it is shown that controlled by an evolved solution, blind robots make an essential contribution to the group’s performance.

The study is carried out using a physics-based simulation of a real robotic system that is currently under construction.


Robotic System Transport Performance Green Object Robot Group Group Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiyama, Y., Hara, M., Yabuki, T., Ota, J., Arai, T.: Cooperative transportation by two four-legged robots with implicit communication. Robotics and Autonomous Systems 29, 13–19 (1999)CrossRefGoogle Scholar
  2. Beyer, H.-G.: The Theory of Evolution Strategies. Springer, Berlin (2001)Google Scholar
  3. Deneubourg, J.-L., Goss, S.: Collective patterns and decision-making. Ethology, Ecology and Evolution 1, 295–311 (1989)CrossRefGoogle Scholar
  4. Deneubourg, J.-L., Goss, S., Sandini, G., Ferrari, F., Dario, P.: Self-organizing collection and transport of objects in unpredictable environments. In: Proc. of Japan – U.S.A Symp. on Flexible Automation, Kyoto, Japan. ISCIE, pp. 1093–1098 (1990)Google Scholar
  5. Dorigo, M., Trianni, V., Sa̧hin, E., Groß, R., Labella, T.H., Baldassarre, G., Nolfi, S., Deneubourg, J.-L., Mondada, F., Floreano, D., Gambardella, L.M.: Evolving selforganizing behaviors for a swarm-bot. Autonomous Robots 17(2–3), 223–245 (2004)CrossRefGoogle Scholar
  6. Elman, J.L.: Finding structure in time. Cognitive Science 14, 179–211 (1990)CrossRefGoogle Scholar
  7. Grassé, P.-P.: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: essai d’interprétation du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)CrossRefGoogle Scholar
  8. Groß, R., Dorigo, M.: Cooperative transport of objects of different shapes and sizes. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 107–118. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. Kube, C.R., Zhang, H.: Collective robotics: from social insects to robots. Adaptive Behaviour 2(2), 189–218 (1993)CrossRefGoogle Scholar
  10. Kube, C.R., Zhang, H.: Stagnation recovery behaviours for collective robotics. In: 1994 IEEE/RSJ/GI Int. Conf. on Intelligent Robotics and Systems, pp. 1883–1890. IEEE Computer Society Press, Los Alamitos (1995)Google Scholar
  11. Mondada, F., Pettinaro, G.C., Guignard, A., Kwee, I.V., Floreano, D., Deneubourg, J.-L., Nolfi, S., Gambardella, L.M., Dorigo, M.: SWARM-BOT: A new distributed robotic concept. Autonomous Robots 17(2–3), 193–221 (2004)CrossRefGoogle Scholar
  12. Parker, L.E.: Current state of the art in distributed autonomous mobile robotics. In: Distributed Autonomous Robotic System, Tokyo, Japan, vol. 4, pp. 3–12. Springer, Heidelberg (2000)Google Scholar
  13. Schwefel, H.-P.: Evolutionsstrategie und numerische Optimierung. PhD thesis, Technische Universität Berlin, Germany (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Roderich Groß
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations