A Reduced Markov Model of GAs Without the Exact Transition Matrix

  • Cheah C. J. Moey
  • Jonathan E. Rowe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)


Modelling a finite population genetic algorithm (GA) as a Markov chain can quickly become unmanageable since the number of population states increases rapidly with the population size and search space size. One approach to resolving this issue is to “lump” similar states together, so that a tractable Markov chain can be produced. A paper by Spears and De Jong in [1] presents an algorithm that can be used to lump states together, thus compressing the probability transition matrix. However, to obtain a lumped model, one needs to calculate the exact transition matrix before the algorithm can be applied to it. In this paper, we explore the possibility of producing a reduced Markov model without the need to first produce the exact model. We illustrate this approach using the Vose model and Spears lumping algorithm on the Onemax problem with a selection-mutation GA.


  1. 1.
    Spears, W.M., De Jong, K.A.: Analyzing GAs using Markov Chains with Semantically Ordered and Lumped States. In: Proceedings of Foundations of Genetic Algorithms, Morgan Kaufmann Publishers, San Francisco (1996)Google Scholar
  2. 2.
    Davis, T.E., Principe, J.C.: A markov chain framework for the simple genetic algorithm. Evolutionary Computation 1, 269–288 (1993)CrossRefGoogle Scholar
  3. 3.
    De Jong, K.A., Spears, W.M., Gordon, D.F.: Using Markov Chains to Analyze GAFOs. In: Whitley, L.D., Vose, M.D. (eds.) Proceedings of Foundations of Genetic Algorithms, vol. 3, pp. 115–137. Morgan Kaufmann, San Francisco (1995)Google Scholar
  4. 4.
    He, J., Yao, X.: From an Individual to a Population: An Analysis of the First Hitting Time of Population-Based Evolutionary Algorithm. IEEE Transactions on Evolutionary Computation 6, 495–511 (2003)Google Scholar
  5. 5.
    Nijssen, S., Bäck, T.: An Analysis of the Behaviour of Simplified Evolutionary Algorithms on Trap Functions. IEEE Transactions on Evolutionary Computation 7, 11–22 (2003)CrossRefGoogle Scholar
  6. 6.
    Rees, J., Koehler, G.J.: An Investigation of GA Performance Results for Different Cardinality Alphabets. In: Davis, L.D., De Jong, K., Vose, M.D., Whitley, L.D. (eds.) Evolutionary Algorithms, pp. 191–206. Springer, New York (1999)Google Scholar
  7. 7.
    Wright, A.H., Zhao, Y.: Markov chain models of genetic algorithms. In: GECCO 1999 (Genetic and Evolutionary Computation Conference), vol. 1, pp. 734–741. Morgan Kaufmann Publishers, San Francisco (1999)Google Scholar
  8. 8.
    Spears, W.M.: A Compression Algorithm for Probability Transition Matrices. SIAM Journal on Matrix Analysis and Applications 20, 60–77 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge (1999)MATHGoogle Scholar
  10. 10.
    Nix, A.E., Vose, M.D.: Modelling genetic algorithms with Markov chains. Annals of Mathematics and Artificial Intelligence 5, 79–88 (1992)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Wright, S.: Evolution in Mandelian populations. Genetics 16, 97–159 (1931)Google Scholar
  12. 12.
    Fisher, R.A.: The genetical theory of natural selection. Clarendon Press, Oxford (1930)MATHGoogle Scholar
  13. 13.
    Moey, C.C.J., Rowe, J.E.: Population Aggregation Based on Fitness. Natural Computing 3, 5–19 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Rowe, J.E.: Population fixed-points for functions of unitation. In: Reeves, C., Banzhaf, W. (eds.) Foundations of Genetic Algorithms, vol. 5, Morgan Kaufmann Publishers, San Francisco (1998)Google Scholar
  15. 15.
    Spears, W.M.: Aggregating Models of Evolutionary Algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 1, pp. 631–638. IEEE Press, Los Alamitos (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Cheah C. J. Moey
    • 1
  • Jonathan E. Rowe
    • 1
  1. 1.School of Computer ScienceUniversity of BirminghamBirminghamGreat Britain

Personalised recommendations