A Primer on the Evolution of Equivalence Classes of Bayesian-Network Structures

  • Jorge Muruzábal
  • Carlos Cotta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)


Bayesian networks (BN) constitute a useful tool to model the joint distribution of a set of random variables of interest. To deal with the problem of learning sensible BN models from data, we have previously considered various evolutionary algorithms for searching the space of BN structures directly. In this paper, we explore a simple evolutionary algorithm designed to search the space of BN equivalence classes. We discuss a number of issues arising in this evolutionary context and provide a first assessment of the new class of algorithms.


  1. 1.
    Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R., Kuijpers, C.H.: Structure learning of bayesian networks by genetic algorithms: A performance analysis of control parameters. IEEE Transactions on Pattern Analysis and Machine Intelligence 10, 912–926 (1996)CrossRefGoogle Scholar
  2. 2.
    Wong, M., Lam, W., Leung, K.: Using evolutionary programming and minimum description length principle for data mining of bayesian networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 21, 174–178 (1999)CrossRefGoogle Scholar
  3. 3.
    Cotta, C., Muruzábal, J.: Towards a more efficient evolutionary induction of bayesian networks. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 730–739. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Heckerman, D.: A tutorial on learning with bayesian networks. In: Jordan, M. (ed.) Learning in Graphical Models, pp. 301–354. Kluwer, Dordrecht (1998)Google Scholar
  5. 5.
    Andersson, S., Madigan, D., Perlman, M.: A characterization of markov equivalence classes for acyclic digraphs. Annals of Statistics 25, 505–541 (1997)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Gillespie, S., Perlman, M.: Enumerating Markov equivalence classes of acyclic digraph models. In: Goldszmidt, M., Breese, J., Koller, D. (eds.) Proceedings of the Seventh Conference on Uncertainty in Artificial Intelligence, Seatle WA, pp. 171–177. Morgan Kaufmann, San Francisco (2001)Google Scholar
  7. 7.
    Chickering, D.: Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research 2, 445–498 (2002)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966)MATHGoogle Scholar
  9. 9.
    Heckerman, D., Geiger, D., Chickering, D.: Learning bayesian networks: the combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995)MATHGoogle Scholar
  10. 10.
    Acid, S., de Campos, L.M.: Searching for bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research 18, 445–490 (2003)MATHMathSciNetGoogle Scholar
  11. 11.
    Eiben, A., Smith, J.: Introduction to Evolutionary Computing. Springer, Heidelberg (2003)MATHGoogle Scholar
  12. 12.
    Beinlich, I., Suermondt, H., Chavez, R., Cooper, G.: The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In: Hunter, J., Cookson, J., Wyatt, J. (eds.) Proceedings of the Second European Conference on Artificial Intelligence and Medicine, pp. 247–256. Springer, Heidelberg (1989)Google Scholar
  13. 13.
    Kayaalp, M., Cooper, G.: A bayesian network scoring metric that is based on globally uniform parameter priors. In: Darwiche, A., Friedman, N. (eds.) Proceedings of the Eighteenth Annual Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, Morgan Kaufmann, San Francisco (2002)Google Scholar
  14. 14.
    Castelo, R., Kočka, T.: On inclusion-driven learning of bayesian networks. Journal of Machine Learning Research 4, 527–574 (2003)CrossRefGoogle Scholar
  15. 15.
    Chickering, D.: Optimal structure identification with greedy search. Journal of Machine Learning Research 3, 507–554 (2002)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Nielsen, J., Kočka, T., Peña, J.: On local optima in learning bayesian networks. In: Rulff, U., Meek, C. (eds.) Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, Acapulco, Mexico, pp. 435–442. Morgan Kaufmann, San Francisco (2003)Google Scholar
  17. 17.
    Beyer, H.G.: Toward a theory of evolution strategies: Self adaptation. Evolutionary Computation 3, 311–347 (1996)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Glover, F., Laguna, M., Martí, R.: Fundamentals of scatter search and path relinking. Control and Cybernetics 39, 653–684 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jorge Muruzábal
    • 1
  • Carlos Cotta
    • 2
  1. 1.Grupo de Estadística y Ciencias de la Decisión, ESCETUniversity Rey Juan CarlosMóstolesSpain
  2. 2.Dept. Lenguajes y Ciencias de la Computación, ETSI InformáticaUniversity of Málaga, Campus de TeatinosMálagaSpain

Personalised recommendations