A Hybrid GRASP – Evolutionary Algorithm Approach to Golomb Ruler Search

  • Carlos Cotta
  • Antonio J. Fernández
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)

Abstract

We consider the problem of finding small Golomb rulers, a hard combinatorial optimization task. This problem is here tackled by means of a hybrid evolutionary algorithm (EA). This EA incorporates ideas from greedy randomized adaptive search procedures (GRASP) in order to perform the genotype-to-phenotype mapping. As it will be shown, this hybrid approach can provide high quality results, better than those of reactive GRASP and other EAs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babcock, W.: Intermodulation interference in radio systems. Bell Systems Technical Journal, 63–73 (1953)Google Scholar
  2. Bloom, G., Golomb, S.: Aplications of numbered undirected graphs. Proceedings of the IEEE 65, 562–570 (1977)CrossRefGoogle Scholar
  3. Feeney, B.: Determining optimum and near-optimum golomb rulers using genetic algorithms. Master thesis, Computer Science, University College Cork (2003)Google Scholar
  4. Rankin, W.: Optimal golomb rulers: An exhaustive parallel search implementation. Master thesis, Duke University Electrical Engineering Dept., Durham, NC (1993)Google Scholar
  5. Shearer, J.: Some new optimum golomb rulers. IEEE Transactions on Information Theory 36, 183–184 (1990)CrossRefMathSciNetGoogle Scholar
  6. Klove, T.: Bounds and construction for difference triangle sets. IEEE Transactions on Information Theory 35, 879–886 (1989)CrossRefMathSciNetGoogle Scholar
  7. Shearer, J.B.: Golomb ruler table. Mathematics Department, IBM Research (2001), http://www.research.ibm.com/people/s/shearer/grtab.html
  8. Schneider, W.: Golomb rulers. MATHEWS: The Archive of Recreational Mathematics (2002), http://www.wschnei.de/number-theory/golomb-rulers.html
  9. Garry, M., Vanderschel, D., et al.: In search of the optimal 20, 21 & 22 mark golomb rulers. GVANT project (1999), http://members.aol.com/golomb20/index.html
  10. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6, 109–133 (1995)MATHCrossRefMathSciNetGoogle Scholar
  11. Mirchandani, P., Francis, R.: Discrete Location Theory. Wiley Interscience, Hoboken (1990)MATHGoogle Scholar
  12. Soliday, S., Homaifar, A., Lebby, G.: Genetic algorithm approach to the search for golomb rulers. In: Eshelman, L. (ed.) 6th International Conference on Genetic Algorithms (ICGA 1995), Pittsburgh, PA, USA, pp. 528–535. Morgan Kaufmann, San Francisco (1995)Google Scholar
  13. Houck, C., Joines, J., Kay, M., Wilson, J.: Empirical investigation of the benefits of partial lamarckianism. Evolutionary Computation 5, 31–60 (1997)CrossRefGoogle Scholar
  14. Julstrom, B.: Comparing darwinian, baldwinian, and lamarckian search in a genetic algorithm for the 4-cycle problem. In: Brave, S., Wu., A. (eds.) Late Breaking Papers at the 1999 Genetic and Evolutionary Computation Conference, Orlando, FL, pp. 134–138 (1999)Google Scholar
  15. Giraud-Carrier, C.: Unifying learning with evolution through baldwinian evolution and lamarckism: A case study. In: Zimmermann, H.J., Tselentis, G., van Someren, M., Dounias, G. (eds.) Advances in Computational Intelligence and Learning: Methods and Applications, pp. 159–168. Kluwer Academic Publishers, Dordrecht (2002)Google Scholar
  16. Moscato, P.: Memetic algorithms: A short introduction. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 219–234. McGraw-Hill, Maidenhead (1999)Google Scholar
  17. Pereira, F.B., Tavares, J., Costa, E.: Golomb rulers: The advantage of evolution. In: Pires, F.M., Abreu, S.P. (eds.) EPIA 2003. LNCS (LNAI), vol. 2902, pp. 29–42. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. Bean, J.: Genetic algorithms and random keys for sequencing and optimization. ORSA Journal on Computing 6, 154–160 (1994)MATHGoogle Scholar
  19. Resende, M., Ribeiro, C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochenberger, G. (eds.) Handbook of Metaheuristics, pp. 219–249. Kluwer Academic Publishers, Boston (2003)Google Scholar
  20. Prais, M., Ribeiro, C.: Parameter variation in GRASP procedures. Investigación Operativa 9, 1–20 (2000)Google Scholar
  21. Prais, M., Ribeiro, C.: Reactive GRASP: an application to a matrix decomposition problem in TDMA traffic assignment. INFORMS Journal on Computing 12, 164–176 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. Radcliffe, N.: Equivalence class analysis of genetic algorithms. Complex Systems 5, 183–205 (1991)MATHMathSciNetGoogle Scholar
  23. Tavares, J., Pereira, F., Costa, E.: Understanding the role of insertion and correction in the evolution of golomb rulers. In: Congress on Evolutionary Computation Conference (CEC 2004), Portland, Oregon, IEEE, Los Alamitos (2004)Google Scholar
  24. Galinier, P., Jaumard, B., Morales, R., Pesant, G.: A constraint-based approach to the golomb ruler problem. In: Third International Workshop on Integration of AI and OR Techniques, Kent, UK, pp. 321–324 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Carlos Cotta
    • 1
  • Antonio J. Fernández
    • 1
  1. 1.Dept. Lenguajes y Ciencias de la Computación, ETSI InformáticaUniversity of Málaga, Campus de TeatinosMálagaSpain

Personalised recommendations