The Ising Model: Simple Evolutionary Algorithms as Adaptation Schemes

  • Patrick Briest
  • Dimo Brockhoff
  • Bastian Degener
  • Matthias Englert
  • Christian Gunia
  • Oliver Heering
  • Thomas Jansen
  • Michael Leifhelm
  • Kai Plociennik
  • Heiko Röglin
  • Andrea Schweer
  • Dirk Sudholt
  • Stefan Tannenbaum
  • Ingo Wegener
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)

Abstract

The investigation of evolutionary algorithms as adaptation schemes has a long history starting with Holland (1975). The Ising model from physics leads to a variety of different problem instances and it is interesting to investigate how simple evolutionary algorithms cope with these problems. A theoretical analysis is known only for the Ising model on the ring and partially for the Ising model on the two-dimensional torus. Here, the two-dimensional torus, the d-dimensional hypercube, and graphs consisting of two cliques connected by some bridges are investigated experimentally. Many hypotheses are confirmed by rigorous statistical tests.

References

  1. 1.
    Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoretical Computer Science 276, 51–81 (2002)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Fischer, S.: A polynomial upper bound for a mutation-based algorithm on the two-dimensional Ising model. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1100–1112. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Fischer, S., Wegener, I.: The Ising model on the ring: Mutation versus recombination. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 1113–1124. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Garnier, J., Kallel, L., Schoenauer, M.: Rigorous hitting times for binary mutations. Evolutionary Computation 7, 173–203 (1999)CrossRefGoogle Scholar
  5. 5.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. of Michigan, MI (1975)Google Scholar
  6. 6.
    Ising, E.: Beiträge zur Theorie des Ferromagnetismus. Z. Physik 31, 235–288 (1925)CrossRefGoogle Scholar
  7. 7.
    Ladret, V.: Asymptotic hitting time for a simple evolutionary model of protein folding. Technical report (2004), http://arxiv.org/abs/math.PR/0308237
  8. 8.
    Naudts, B., Naudts, J.: The effect of spin-flip symmetry on the performance of the simple GA. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 67–76. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Pelikan, M., Goldberg, D.E.: Hierarchical BOA solves Ising spin glasses and MAXSAT. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1271–1282. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Van Hoyweghen, C., Goldberg, D.E., Naudts, B.: From twomax to the Ising model: Easy and hard symmetrical problems. In: Proc. of the Genetic and Evolutionary Computation Conference (GECCO 2002), pp. 626–633. Morgan Kaufmann, San Francisco (2002)Google Scholar
  11. 11.
    Van Hoyweghen, C., Naudts, B., Goldberg, D.E.: Spin-flip symmetry and synchronization. Evolutionary Computation 10, 317–344 (2002)CrossRefGoogle Scholar
  12. 12.
    Wegener, I., Witt, C.: On the analysis of a simple evolutionary algorithm on quadratic pseudo-boolean functions. To appear in Journal of Discrete Algorithms (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Patrick Briest
    • 1
  • Dimo Brockhoff
    • 1
  • Bastian Degener
    • 1
  • Matthias Englert
    • 1
  • Christian Gunia
    • 1
  • Oliver Heering
    • 1
  • Thomas Jansen
    • 1
  • Michael Leifhelm
    • 1
  • Kai Plociennik
    • 1
  • Heiko Röglin
    • 1
  • Andrea Schweer
    • 1
  • Dirk Sudholt
    • 1
  • Stefan Tannenbaum
    • 1
  • Ingo Wegener
    • 1
  1. 1.FB Informatik, LS2Univ. DortmundDortmundGermany

Personalised recommendations