Fitness Distributions and GA Hardness
Conference paper
Abstract
Considerable research effort has been spent in trying to formulate a good definition of GA-Hardness. Given an instance of a problem, the objective is to estimate the performance of a GA. Despite partial successes current definitions are still unsatisfactory. In this paper we make some steps towards a new, more powerful way of assessing problem difficulty based on the properties of a problem’s fitness distribution. We present experimental results that strongly support this idea
Preview
Unable to display preview. Download preview PDF.
References
- 1.Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Morgan Kaufmann, San Francisco (1989)zbMATHGoogle Scholar
- 2.Forrest, S., Mitchell, M.: Relative Building Block Fitness and the Building Block Hypothesis. In: Whitley, D. (ed.) Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Mateo (1992)Google Scholar
- 3.Goldberg, D.E.: Making genetic algorithm fly: a lesson from the Wright brothers. Advanced Technology For Developers 2, 1–8 (1993)Google Scholar
- 4.Rana, S.: Examining the Role of Local Optima and Schema Processing in Genetic Search. PhD thesis, Colorado State University (1998)Google Scholar
- 5.Grefenstette, J.J.: Deception considered harmful. In: Whitley, D. (ed.) Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Mateo (1993)Google Scholar
- 6.Jansen, T.: On Classifications of Fitness Functions. Reihe CI 76/99, SFB 531, Universität Dortmund (1999)Google Scholar
- 7.Davidor, Y.: Epistasis variance: A viewpoint on GA-hardness. In: Rawlines, G.J.E. (ed.) FOGA-1, pp. 23–55. Morgan Kaufman, San Francisco (1991)Google Scholar
- 8.Naudts, B.: Measuring GA-hardness. Ph.d thesis. UV. Of Antwerp. Belgium (1998)Google Scholar
- 9.Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
- 10.Altenberg, L.: NK fitness landscapes. Handbook of Evolutionary Computation (1997b)Google Scholar
- 11.Naudts, B., Kallel, L.: Comparison of summery statistics of fitness landscapes. IEEE Trans.Evol.Comp. (2000)Google Scholar
- 12.Guo, H., Hsu, W.H.: GA-hardness Revisited. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003) (poster paper)CrossRefGoogle Scholar
- 13.Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, San Francisco, CA, pp. 184–192 (1995)Google Scholar
- 14.Altenberg, L.: Fitness Distance Correlation analysis: An instructive counter-example. In: ICGA, pp. 57–64 (1997a)Google Scholar
- 15.Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. In: Studies in Fuzziness and Soft Computing, 1st edn. 104, Springer, Heidelberg (2002)Google Scholar
- 16.Altenberg, L.: Evolving better representations through selective genome growth. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation. Part 1 (1994)Google Scholar
- 17.Moraglio, A., Poli, R.: Topological interpretation of crossover. In: GECCO 2004Google Scholar
- 18.Radcliffe, N.J.: Equivalence class analysis of genetic algorithms. In: Foundations of Genetic Algorithms, vol. 3, Morgan Kaufmann, San Francisco (1994)Google Scholar
- 19.Huttel, H.: On Rice’s Theorem. Aalborg University (2001)Google Scholar
- 20.Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 4, 67–82 (1997)CrossRefGoogle Scholar
- 21.Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal of Experimental and Theoretical Artificial Intelligence 2, 101–115 (1990)CrossRefGoogle Scholar
- 22.Rose, H., Ebeling, W., Asselmeyer, T.: The Density of States – a Measure of the Difficulty of Optimization Problems. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, Springer, Heidelberg (1996)Google Scholar
- 23.Naudts, B., Landrieu, I.: Comparing population mean curves. In: FOGA 2000 (2000)Google Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2004