Advertisement

Fitness Distributions and GA Hardness

  • Yossi Borenstein
  • Riccardo Poli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)

Abstract

Considerable research effort has been spent in trying to formulate a good definition of GA-Hardness. Given an instance of a problem, the objective is to estimate the performance of a GA. Despite partial successes current definitions are still unsatisfactory. In this paper we make some steps towards a new, more powerful way of assessing problem difficulty based on the properties of a problem’s fitness distribution. We present experimental results that strongly support this idea

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Morgan Kaufmann, San Francisco (1989)zbMATHGoogle Scholar
  2. 2.
    Forrest, S., Mitchell, M.: Relative Building Block Fitness and the Building Block Hypothesis. In: Whitley, D. (ed.) Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Mateo (1992)Google Scholar
  3. 3.
    Goldberg, D.E.: Making genetic algorithm fly: a lesson from the Wright brothers. Advanced Technology For Developers 2, 1–8 (1993)Google Scholar
  4. 4.
    Rana, S.: Examining the Role of Local Optima and Schema Processing in Genetic Search. PhD thesis, Colorado State University (1998)Google Scholar
  5. 5.
    Grefenstette, J.J.: Deception considered harmful. In: Whitley, D. (ed.) Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Mateo (1993)Google Scholar
  6. 6.
    Jansen, T.: On Classifications of Fitness Functions. Reihe CI 76/99, SFB 531, Universität Dortmund (1999)Google Scholar
  7. 7.
    Davidor, Y.: Epistasis variance: A viewpoint on GA-hardness. In: Rawlines, G.J.E. (ed.) FOGA-1, pp. 23–55. Morgan Kaufman, San Francisco (1991)Google Scholar
  8. 8.
    Naudts, B.: Measuring GA-hardness. Ph.d thesis. UV. Of Antwerp. Belgium (1998)Google Scholar
  9. 9.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)Google Scholar
  10. 10.
    Altenberg, L.: NK fitness landscapes. Handbook of Evolutionary Computation (1997b)Google Scholar
  11. 11.
    Naudts, B., Kallel, L.: Comparison of summery statistics of fitness landscapes. IEEE Trans.Evol.Comp. (2000)Google Scholar
  12. 12.
    Guo, H., Hsu, W.H.: GA-hardness Revisited. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, Springer, Heidelberg (2003) (poster paper)CrossRefGoogle Scholar
  13. 13.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Eshelman, L. (ed.) Proceedings of the Sixth International Conference on Genetic Algorithms, San Francisco, CA, pp. 184–192 (1995)Google Scholar
  14. 14.
    Altenberg, L.: Fitness Distance Correlation analysis: An instructive counter-example. In: ICGA, pp. 57–64 (1997a)Google Scholar
  15. 15.
    Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. In: Studies in Fuzziness and Soft Computing, 1st edn. 104, Springer, Heidelberg (2002)Google Scholar
  16. 16.
    Altenberg, L.: Evolving better representations through selective genome growth. In: Proceedings of the 1st IEEE Conference on Evolutionary Computation. Part 1 (1994)Google Scholar
  17. 17.
    Moraglio, A., Poli, R.: Topological interpretation of crossover. In: GECCO 2004Google Scholar
  18. 18.
    Radcliffe, N.J.: Equivalence class analysis of genetic algorithms. In: Foundations of Genetic Algorithms, vol. 3, Morgan Kaufmann, San Francisco (1994)Google Scholar
  19. 19.
    Huttel, H.: On Rice’s Theorem. Aalborg University (2001)Google Scholar
  20. 20.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 4, 67–82 (1997)CrossRefGoogle Scholar
  21. 21.
    Liepins, G.E., Vose, M.D.: Representational issues in genetic optimization. Journal of Experimental and Theoretical Artificial Intelligence 2, 101–115 (1990)CrossRefGoogle Scholar
  22. 22.
    Rose, H., Ebeling, W., Asselmeyer, T.: The Density of States – a Measure of the Difficulty of Optimization Problems. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, Springer, Heidelberg (1996)Google Scholar
  23. 23.
    Naudts, B., Landrieu, I.: Comparing population mean curves. In: FOGA 2000 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Yossi Borenstein
    • 1
  • Riccardo Poli
    • 1
  1. 1.Department of Computer ScienceUniversity of Essex 

Personalised recommendations