Statistical Racing Techniques for Improved Empirical Evaluation of Evolutionary Algorithms

  • Bo Yuan
  • Marcus Gallagher
Conference paper

DOI: 10.1007/978-3-540-30217-9_18

Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)
Cite this paper as:
Yuan B., Gallagher M. (2004) Statistical Racing Techniques for Improved Empirical Evaluation of Evolutionary Algorithms. In: Yao X. et al. (eds) Parallel Problem Solving from Nature - PPSN VIII. PPSN 2004. Lecture Notes in Computer Science, vol 3242. Springer, Berlin, Heidelberg

Abstract

In empirical studies of Evolutionary Algorithms, it is usually desirable to evaluate and compare algorithms using as many different parameter settings and test problems as possible, in order to have a clear and detailed picture of their performance. Unfortunately, the total number of experiments required may be very large, which often makes such research work computationally prohibitive. In this paper, the application of a statistical method called racing is proposed as a general-purpose tool to reduce the computational requirements of large-scale experimental studies in evolutionary algorithms. Experimental results are presented that show that racing typically requires only a small fraction of the cost of an exhaustive experimental study.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bo Yuan
    • 1
  • Marcus Gallagher
    • 1
  1. 1.School of Information Technology and Electrical EngineeringUniversity of QueenslandAustralia

Personalised recommendations