An Analysis of the Effectiveness of Multi-parent Crossover

  • Chuan-Kang Ting
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)

Abstract

Multi-parent crossovers have shown their superiority over classic two-parent crossovers in several problems. However, they still lack theoretical foundation to support the advantages of using more than two parents. In this paper we propose a uniform population model that helps analyze the behavior of crossover beyond the influence of selection process and the number of parents. An analysis of the probability for multi-parent diagonal crossover to obtain the optimal solution is derived accordingly. Analytical results demonstrate the advantage and limitation of multi-parent crossovers over two-parent crossover.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. Univ. Michigan (1975)Google Scholar
  2. 2.
    Eiben, A.E.: Multiparent Recombination. Evolutionary Computation 1: Basic Algorithms and Operators, pp. 289–307. Institute of Physics Publishing (2000)Google Scholar
  3. 3.
    Eiben, A.E.: Multiparent Recombination in Evolutionary Computing. Advances in Evolutionary Computing, Natural Computing Series. Springer, Heidelberg (2002)Google Scholar
  4. 4.
    Eiben, A.E., Raué, P.-E., Ruttkay, Z.: Genetic Algorithms with Multi-parent Recombination. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 78–87. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Eiben, A.E., van Kemenade, C.H.M., Kolk, J.N.: Orgy in the Computer: Multi- parent Reproduction in Genetic Algorithms. In: Proc. 3rd European Conf. on Artificial Life, pp. 934–945 (1995)Google Scholar
  6. 6.
    Eiben, A.E., van Kemenade, C.H.M.: Diagonal Crossover in Genetic Algorithms for Numerical Optimization. Journal of Control and Cybernetics 26(3), 447–465 (1997)MATHGoogle Scholar
  7. 7.
    Kita, H., Ono, I., Kobayashi, S.: Multi-parental Extension of the Unimodal Normal Distribution Crossover for Real-coded GAs. In: Proc. CEC1999, vol. 2, pp. 1581–1588 (1999)Google Scholar
  8. 8.
    Mühlenbein, H., Schomisch, M., Born, J.: The Parallel Genetic Algorithm as Function Optimizer. Parallel Computing 17, 619–632 (1991)MATHCrossRefGoogle Scholar
  9. 9.
    Schwefel, H.-P.: Evolution and Optimum Seeking. Wiley, New York (1995)Google Scholar
  10. 10.
    Tsutsui, S.: Multi-parent Recombination in Genetic Algorithms with Search Space Boundary Extension by Mirroring. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 428–437. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Tsutsui, S., Ghosh, A.: A Study on the Effect of Multi-parent Recombination in Real Coded Genetic Algorithms. In: Proc. IEEE Conf. on Evolutionary Comp., pp. 828–833 (1998)Google Scholar
  12. 12.
    Tsutsui, S., Jain, L.C.: On the Effect of Multi-parents Recombination in Binary Coded GAs. In: Proc. 2nd. Knowledge-based Intelligent Electronic Systems, pp.155–160 (1998)Google Scholar
  13. 13.
    Tsutsui, S., Yamamura, M., Higuchi, T.: Multi-parent Recombination with Simplex Crossover in Real Coded Genetic Algorithms. In: Proc. GECCO1999, pp. 657–664 (1999)Google Scholar
  14. 14.
    Voigt, H.-M., Mühlenbein, H.: Gene Pool Recombination and Utilization of Covariances for the Breeder GA. In: Proc. 2nd Conf. on Evolutionary Computation, pp. 172–177 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Chuan-Kang Ting
    • 1
  1. 1.International Graduate School of Dynamic Intelligent SystemsUniversity PaderbornPaderbornGermany

Personalised recommendations