Behavior of Evolutionary Algorithms in Chaotically Changing Fitness Landscapes

  • Hendrik Richter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)

Abstract

We study an evolutionary algorithm used for optimizing in a chaotically changing dynamic environment. The corresponding chaotic non-stationary fitness landscape can be characterized by quantifiers of the underlying dynamics-generating system. We give experimental results about how these quantifiers, namely the Lyapunov exponents, together with the environmental change period of the landscape influence performance measures of the evolutionary algorithm used for tracking optima.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angeline, P.J.: Tracking Extrema in Dynamic Environments. In: Angeline, P.J., Reynolds, R.G., McDonnell, J.R., Eberhart, R. (eds.) Evolutionary Programming VI, pp. 335–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Arnold, D.V., Beyer, H.G.: Random Dynamics Optimum Tracking with Evolution Strategies. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 3–12. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bäck, T.: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford Univ. Press, New York (1996)MATHGoogle Scholar
  4. 4.
    Bäck, T.: On the Behavior of Evolutionary Algorithms in Dynamic Environments. In: Fogel, D.B., Schwefel, H.P., Bäck, T., Yao, X. (eds.) Proc. IEEE Int. Conf. on Evolutionary Computation, pp. 446–451. IEEE Press, Piscataway (1998)Google Scholar
  5. 5.
    Baier, G., Klein, M.: Maximum Hyperchaos in Generalized Hénon Maps. Phys. Lett. 151, 281–284 (1990)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Branke, J.: Evolutionary Optimization in Dynamic Environments. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  7. 7.
    De Jong, K.A.: Evolving in a Changing World. In: Raś, Z., Skowron, A. (eds.) Foundations of Intelligent Systems, pp. 513–519. Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Goldberg, D.E., Smith, R.E.: Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy. In: Grefenstette, J.J. (ed.) Proc. Second Int. Conf. on Genetic Algorithms, Lawrence Erlbaum, Hillsdale, NJ, pp. 59–68 (1987)Google Scholar
  9. 9.
    Green, J.M., Kim, J.S.: The Calculation of the Lyapunov Spectra. Physica D 24, 213–225 (1987)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Grefenstette, J.J.: Evolvability in Dynamic Fitness Landscapes: A Genetic Algorithm Approach. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. Congress of Evolutionary Computation, pp. 2031–2038. IEEE Press, Piscataway (1999)Google Scholar
  11. 11.
    Kauffman, S.A.: The Origin of Order: Self–Organization and Selection in Evolution. Oxford Univ. Press, New York (1993)Google Scholar
  12. 12.
    Morrison, R.W., De Jong, K.A.: A Test Problem Generator for Non-stationary Environments. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. Congress of Evolutionary Computation, pp. 2047–2053. IEEE Press, Piscataway (1999)Google Scholar
  13. 13.
    Morrison, R.W., De Jong, K.A.: Triggered Hypermutation Revisited. In: Zalzala, A., Fonseca, C., Kim, J.H., Smith, A., Yao, X. (eds.) Proc. Congress of Evolutionary Computation, pp. 1025–1032. IEEE Press, Piscataway (2000)Google Scholar
  14. 14.
    Morrison, R.W.: Performance Measurement in Dynamic Environments. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 99–102. AAAI Press, Menlo Park (2003)Google Scholar
  15. 15.
    Ott, E.: Chaos in Dynamical Systems. Cambridge Univ. Press, Cambridge (1993)MATHGoogle Scholar
  16. 16.
    Richter, H.: The Generalized Hénon Maps: Examples for Higher-dimensional Chaos. Int. J. Bifurcation and Chaos 12, 1371–1384 (2002)MATHCrossRefGoogle Scholar
  17. 17.
    Weicker, K., Weicker, N.: On Evolution Strategy Optimization in Dynamic Environments. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proc. Congress of Evolutionary Computation, pp. 2039–2046. IEEE Press, Piscataway (1999)Google Scholar
  18. 18.
    Weicker, K.: Performance Measures for Dynamic Environments. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 64–73. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining the Lyapunov Exponents from a Time Series. Physica D 16, 285–313 (1985)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hendrik Richter
    • 1
  1. 1.HTWK Leipzig, Fachbereich Elektrotechnik und InformationstechnikInstitut Mess-, Steuerungs- und RegelungstechnikLeipzigGermany

Personalised recommendations