Estimating the Number of Solutions for SAT Problems

  • Colin R. Reeves
  • Mériéma Aupetit-Bélaidouni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)

Abstract

The study of fitness landscapes is important for increasing our understanding of local-search based heuristics and evolutionary algorithms. The number of acceptable solutions in the landscape is a crucial factor in measuring the difficulty of combinatorial optimization and decision problems. This paper estimates this number from statistics on the number of repetitions in the sample history of a search. The approach is applied to the problem of counting the number of satisfying solutions in random and structured SAT instances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H.Freeman, San Francisco (1979)MATHGoogle Scholar
  2. 2.
    Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82, 273–302 (1996)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Jones, T.C.: Evolutionary Algorithms, Fitness Landscapes and Search, Doctoral dissertation, University of New Mexico, Albuquerque, NM (1995)Google Scholar
  4. 4.
    Stadler, P.F.: Towards a Theory of Landscapes. In: Lopéz-Peña, R., Capovilla, R., Garc´ıa-Pelayo, R., Waelbroeck, H., Zertuche, F. (eds.) Complex Systems and Binary Networks, pp. 77–163. Springer, Berlin (1995)Google Scholar
  5. 5.
    Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations Research 86, 473–490 (1999)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Review 44, 3–54 (2002)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Reeves, C.R., Yamada, T.: Genetic algorithms, path relinking and the flowshop sequencing problem. Evolutionary Computation 6, 45–60 (1998)CrossRefGoogle Scholar
  8. 8.
    Eremeev, A., Reeves, C.R.: Non-parametric estimation of properties of combinatorial landscapes. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 31–40. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Eremeev, A.V., Reeves, C.R.: On confidence intervals for the number of local optima. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 224–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Reeves, C.R., Eremeev, A.V.: Statistical analysis of local search landscapes. Journal of the Operational Research Society 55, 687–693 (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Bailleux, O.: Local search for statistical counting. In: Proceedings of AAAI 1998, pp. 386–391. AAAI Press, Menlo Park (1998)Google Scholar
  12. 12.
    Asselmeyer, T., Ebeling, W., Rosé, H.: Smoothing representation of fitness landscapes – the genotype-phenotype map of evolution. BioSystems 39, 63–76 (1996)CrossRefGoogle Scholar
  13. 13.
    Bélaidouni, M., Hao, J.-K.: SAT, local search dynamics and density of states. In: Collet, P., Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M. (eds.) EA 2001. LNCS, vol. 2310, pp. 192–204. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equation of state calculation by fast computing machines. J.of Chem. Phys. 21, 1087–1091 (1953)CrossRefGoogle Scholar
  15. 15.
    Laarhoven, P.J.M.V., Aarts, E.H.L.: Simulated Annealing: Theory and Applications. Kluwer, Dordrecht (1988)Google Scholar
  16. 16.
    Johnson, N.L., Kotz, S.: Discrete distributions. Wiley, New York (1969)MATHGoogle Scholar
  17. 17.
    Burnham, K.P., Overton, W.S.: Estimation of the size of a closed population when capture probabilities vary between animals. Biometrika 65, 625–633 (1978)MATHCrossRefGoogle Scholar
  18. 18.
    Singer, J., Gent, I., Smaill, A.: Backbone fragility and the local search cost peak. J.Artificial Intelligence Research 12, 235–270 (2000)MATHMathSciNetGoogle Scholar
  19. 19.
    Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. In: Gent, I.P., Maaren, H.v., Walsh, T. (eds.) SAT 2000, pp. 283–292. IOS Press, Amsterdam (2000), Available online at http://www.satlib.org/ (last accessed April 15, 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Colin R. Reeves
    • 1
  • Mériéma Aupetit-Bélaidouni
    • 1
  1. 1.School of Mathematical and Information SciencesCoventry UniversityCoventryUK

Personalised recommendations