An Artificial Immune System for Fuzzy-Rule Induction in Data Mining

  • Roberto T. Alves
  • Myriam R. Delgado
  • Heitor S. Lopes
  • Alex A. Freitas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3242)


This work proposes a classification-rule discovery algorithm integrating artificial immune systems and fuzzy systems. The algorithm consists of two parts: a sequential covering procedure and a rule evolution procedure. Each antibody (candidate solution) corresponds to a classification rule. The classification of new examples (antigens) considers not only the fitness of a fuzzy rule based on the entire training set, but also the affinity between the rule and the new example. This affinity must be greater than a threshold in order for the fuzzy rule to be activated, and it is proposed an adaptive procedure for computing this threshold for each rule. This paper reports results for the proposed algorithm in several data sets. Results are analyzed with respect to both predictive accuracy and rule set simplicity, and are compared with C4.5rules, a very popular data mining algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery: an Overview. In: Fayyad, U.M., et al. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–34. AAAI/MIT (1996)Google Scholar
  2. 2.
    Witten, I.H., Frank, E.: Data Mining: Pratical Machine Learning Tools and Techniques with Java Implementation. Morgan Kaufmann, San Mateo (2000)Google Scholar
  3. 3.
    Dasgupta, D.: Artificial Immune Systems and Their Applications. Springer, Berlin (1999)MATHGoogle Scholar
  4. 4.
    Zadeh, L.A.: Fuzzy Sets. Inform. Control 9, 338–352 (1965)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets. Analysis and Design. MIT Press, Cambridge (1998)MATHGoogle Scholar
  6. 6.
    Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computation Intelligence Approach. Springer, Berlin (2002)Google Scholar
  7. 7.
    Ishibuchi, H., Nakashima, T.: Effect of Rule Weights in Fuzzy Rule-based Classification Systems. IEEE T. Fuzzy Syst. 9(4), 506–515 (2001)CrossRefGoogle Scholar
  8. 8.
    Watkins, A.B., Boggess, L.C.: A Resource Limited Artificial Immune Classifier. In: Proc. Congress on Evolutionary Computation, pp. 926–931 (2002)Google Scholar
  9. 9.
    Gonzales, F.A., Dasgupta, D.: An Immunogenetic Technique to Detect Anomalies in Network Traffic. In: Proceedings of Genetic and Evolutionary Computation, pp. 1081–1088. Morgan Kaufmann, San Mateo (2002)Google Scholar
  10. 10.
    Freitas, A.A., Timmis, J.: Revisiting the Foundations of Artificial Immune Systems: a Problem- oriented Perspective. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 229–241. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Nasaroui, O., Gonzales, F., Dasgupta, D.: The Fuzzy Artificial Immune System: motivations, Basic Concepts, and Application to Clustering and Web Profiling. In: Proceedings of IEEE International Conference on Fuzzy Systems, pp. 711–716 (2002)Google Scholar
  12. 12.
    Carvalho, D.R., Freitas, A.A.: A genetic Algorithm with Dequential Niching for Discovering Small-disjunct Rules. In: Proceedings of Genetic and Evolutionary Computation, pp. 1035–1042. Morgan Kaufmann, San Mateo (2002)Google Scholar
  13. 13.
    Back, T., Fogel, D.B., Michalewicz, T. (eds.): Evolutionary Computation, vol. 1. IoP Publishing, Oxford (2000)Google Scholar
  14. 14.
    Lopes, H.S., Coutinho, M.S., Lima, W.C.: An Evolutionary Approach to Simulate Cognitive Feedback Learning in Medical Domain. In: Sanchez, E., Shibata, T., Zadeh, L.A. (eds.) Genetic Algorithms and Fuzzy Logic Systems, pp. 193–207. World Scientific, Singapore (1997)Google Scholar
  15. 15.
    Quinlan, J.R.: C4.5: Programs For Machine Learning. Morgan Kaufmann, San Mateo (1993)Google Scholar
  16. 16.
    Parpinelli, R.S., Lopes, H.S., Freitas, A.: Data Mining With an Ant Colony Optimization Algorithm. IEEE T. Evol. Comput. 6(4), 321–332 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Roberto T. Alves
    • 1
  • Myriam R. Delgado
    • 1
  • Heitor S. Lopes
    • 1
  • Alex A. Freitas
    • 2
  1. 1.CPGEI, CEFET-PRCuritibaBrasil
  2. 2.Computing LaboratoryUniversity of KentCanterburyUK

Personalised recommendations