On Reshaping of Clustering Coefficients in Degree-Based Topology Generators

  • Xiafeng Li
  • Derek Leonard
  • Dmitri Loguinov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3243)


Recent work has shown that the Internet exhibits a power-law node degree distribution and high clustering. Considering that many existing degree-based Internet topology generators do not achieve this level of clustering, we propose a randomized algorithm that increases the clustering coefficients of graphs produced by these generators. Simulation results confirm that our algorithm makes the graphs produced by existing generators match clustering properties of the Internet topology.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albert, R., Barabasi, A.: Topology of Evolving Network: Local Events and Universality. Physica Review Letters 85 (2000)Google Scholar
  2. 2.
    Albert, R., Jeong, H., Barabasi, A.: Diameter of the World Wide Web. Nature 401 (1999)Google Scholar
  3. 3.
    Albert, R., Jeong, H., Barabasi, A.: Error and Attack Tolerance in Complex Networks. Nature 406 (July 2000)Google Scholar
  4. 4.
    Barabasi, A., Jeong, H., Ravasz, R., Neda, Z., Vicsek, T., Schubert, A.: On the Topology of the Scientific Collaboration Networks. Physica A 311 (2002)Google Scholar
  5. 5.
    Aiello, W., Chung, F.R.K., Lu, L.: A Random Graph Model for Massive Graphs. In: ACM STOC (2000)Google Scholar
  6. 6.
    Aiello, W., Chung, F.R.K., Lu, L.: Random Evolution in Massive Graphs. In: IEEE FOCS (2001)Google Scholar
  7. 7.
    Barabasi, A., Albert, R., Jeong, H.: Mean-field Theory for Scale-free Random Networks. Physica A 272 (1999)Google Scholar
  8. 8.
    Barabasi, A., Albert, R.: Emergence of Scaling in Random Networks. Science (October 1999)Google Scholar
  9. 9.
    Barabasi, A., Albert, R., Jeong, H.: Scale-free Characteristics of Random Networks: The Topology of the World Wide Web. Physica A 281, 69–77 (2000)CrossRefGoogle Scholar
  10. 10.
    Bu, T., Towsley, D.: On Distinguishing between Internet Power Law Topology Generators. In: IEEE INFOCOM (June 2002)Google Scholar
  11. 11.
    Calvert, K., Doar, M., Zegura, E.: Modeling Internet Topology. IEEE Communications Magazine (June 1997)Google Scholar
  12. 12.
    Chang, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: Towards Capturing Representative AS-Level Internet Topologies, University of Michigan Technical Report CSE-TR-454-02 (2002)Google Scholar
  13. 13.
    Chen, Q., Chang, H., Govindan, R., Jamin, S., Shenker, S., Willinger, W.: The Origin of Power-laws in Internet Topologies Revisited. In: IEEE INFOCOM (June 2002)Google Scholar
  14. 14.
    Chung, F.R.K.: Connected Components in Random Graphs with Given Expected Degree Sequences. Annals of Combinatorics 6 (2002)Google Scholar
  15. 15.
    Chung, F.R.K.: The Spectra of Random Graphs with Given Expected Degree,
  16. 16.
    Doar, M.: A Better Model for Generating Test networks. In: IEEE GLOBECOM (November 1996)Google Scholar
  17. 17.
    Erdos, P., Renyi, A.: On Random Graphs. I, Publication Math. Debrecen 6, 290–291 (1959)zbMATHGoogle Scholar
  18. 18.
    Ng, T.S.E., Zhang, H.: Predicting Internet Network Distance with Coordinates-Based Approaches. In: IEEE INFOCOM (2002)Google Scholar
  19. 19.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-Law Relationships of the Internet Topology. In: ACM SIGCOMM (August 1999)Google Scholar
  20. 20.
    Francis, P., et al.: IDMaps: A Global Internet Host Distance Estimation Service. IEEE/ACM Transactions on Networking 9(5) (October 2001)Google Scholar
  21. 21.
    Jin, C., Chen, Q., Jamin, S.: Inet: Internet Topology Generator, University of Michigan Technical Report CSE-RT-433-00 (2000)Google Scholar
  22. 22.
    Huston, G.: Architectural Requirements for Inter-Domain routing in the Internet, http://IETFDraftdraft-iab-bgparch-01.txt
  23. 23.
    Labovitz, C., Ahuja, A., Wattenhofer, R., Venkatachary, S.: The Impact of Internet Policy and Topology on Delayed Routing Convergence. In: IEEE INFOCOM (2001)Google Scholar
  24. 24.
    Leon, Y.: Probability and Statistics with applications. International Textbook Company (1969)Google Scholar
  25. 25.
  26. 26.
    Mihail, M., Papadimitriou, C.H.: On the Eigenvalue Power Law. In: RANDOM (2002)Google Scholar
  27. 27.
    Mihail, M., Visnoi, N.: On Generating Graphs with Prescribed Degree Sequences for Complex Network Modeling applications. In: ARACNE (2002)Google Scholar
  28. 28.
    Molloy, M., Reed, B.: A Critical Point for Random Graphs with a Given Degree Sequence. Random Structures and Algorithms 6, 161–180 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    National Laboratory for Applied Network Research. Global ISP Interconnectivity by AS Number,
  30. 30.
    Radoslavov, P., Tangmunarunkit, H., Yu, H., Govindan, R., Shenker, S., Estrin, D.: On Characterizing Network Topologies and Analyzing Their Impact on Protocol Design, USC Technical Report 00-731 (February 2000)Google Scholar
  31. 31.
    Ravasz, E., Barabasi, A.: Hierarchical Organization in Complex Networks. Physical Review E (in press)Google Scholar
  32. 32.
    Watts, D.J.: Small World. Princeton University Press, Princeton (1999)zbMATHGoogle Scholar
  33. 33.
    Yook, S., Jeong, H., Barabasi, A.: Modeling the Internet’s Large-scale Topology. Proceedings of the Nat’l Academy of Sciences, 99 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xiafeng Li
    • 1
  • Derek Leonard
    • 1
  • Dmitri Loguinov
    • 1
  1. 1.Texas A&M UniversityCollege StationUSA

Personalised recommendations