Fast PageRank Computation Via a Sparse Linear System (Extended Abstract)

  • Gianna M. Del Corso
  • Antonio Gullí
  • Francesco Romani
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3243)

Abstract

The research community has devoted an increased attention to reduce the computation time needed by Web ranking algorithms. Many efforts have been devoted to improve PageRank [4, 23], the well known ranking algorithm used by Google. The core of PageRank exploits an iterative weight assignment of ranks to the Web pages, until a fixed point is reached. This fixed point turns out to be the (dominant) eigenpair of a matrix derived by the Web Graph itself.

Keywords

Link Analysis Search Engines Web Matrix Reducibility and Permutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arasu, A., Novak, J., Tomkins, A., Tomlin, J.: PageRank computation and the structure of the Web: Experiments and algorithms. In: Proc. of the 11th WWW Conf. (2002)Google Scholar
  2. 2.
    Bianchini, M., Gori, M., Scarselli, F.: Inside PageRank. ACM Trans. on Internet Technology (to appear, 2004)Google Scholar
  3. 3.
    Boldi, P., Vigna, S.: WebGraph framework i: Compression techniques. In: Proc. of the 23th Int. WWW Conf. (2004)Google Scholar
  4. 4.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)CrossRefGoogle Scholar
  5. 5.
    Broder, A.Z., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R., Tomkins, A., Wiener, J.L.: Graph structure in the Web. Computer Networks 33, 309–320 (2000)CrossRefGoogle Scholar
  6. 6.
    Buchsbaum, A.L., Goldwasser, M., Venkatasubramanian, S., Westbrook, J.: On external memory graph traversal. In: SODA, pp. 859–860 (2000)Google Scholar
  7. 7.
    Chen, Y., Gan, Q., Suel, T.: I/o-efficient techniques for computing Pagerank. In: Proc. of the 11th WWW Conf. (2002)Google Scholar
  8. 8.
    Cho, J., Roy, S.: Impact of Web search engines on page popularity. In: Proc. of the 13th WWW Conf. (2004)Google Scholar
  9. 9.
    Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices. In: Proc. 24th Nat. Conf. ACM, pp. 157–172 (1969)Google Scholar
  10. 10.
    Douglas, C., Hu, J., Iskandarani, M., Kowarschik, M., Rüde, U., Weiss, C.: Maximizing cache memory usage for multigrid algorithms. In: Multiphase Flows and Transport in Porous Media: State of the Art, pp. 124–137. Springer, Heidelberg (2000)Google Scholar
  11. 11.
    Eiron, N., McCurley, S., Tomlin, J.A.: Ranking the web frontier. In: Proc. of 13th WWW Conf. (2004)Google Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The John Hopkins University Press, Baltimore (1996)MATHGoogle Scholar
  13. 13.
    Haveliwala, T.: Efficient computation of PageRank. Technical report, Stanford University (1999)Google Scholar
  14. 14.
    Haveliwala, T.: Topic-sensitive PageRank. In: Proc. of the 11th WWW Conf. (2002)Google Scholar
  15. 15.
    Haveliwala, T., Kamvar, S., Jeh, G.: An analytical comparison of approaches to personalizing PageRank. Technical report, Stanford University (2003)Google Scholar
  16. 16.
    Jeh, G., Widom, J.: Scaling personalized Web search. In: Proc. of the 12th WWW Conf. (2002)Google Scholar
  17. 17.
    Kamvar, S., Haveliwala, T.: The condition number of the pagerank problem. Technical report, Stanford University (2003)Google Scholar
  18. 18.
    Kamvar, S., Haveliwala, T., Manning, C., Golub, G.: Extrapolation methods for accelerating PageRank computations. In: Proc. of 12th. WWW Conf. (2003)Google Scholar
  19. 19.
    Kamvar, S.D., Haveliwala, T.H., Manning, C., Golub, G.H.: Exploiting the block structure of the Web for computing PageRank. Technical report, Stanford University (2003)Google Scholar
  20. 20.
    Langville, A.N., Meyer, C.D.: Deeper inside PageRank. Internet Mathematics (to appear, 2004)Google Scholar
  21. 21.
    Lee, C.P., Golub, G.H., Zenios, S.A.: A fast two-stage algorithm for computing PageRank. Technical report, Stanford University (2003)Google Scholar
  22. 22.
    Mehlhorn, K., Meyer, U.: External-memory breadthfirst search with sublinear I/O. In: European Symposium on Algorithms, pp. 723–735 (2002)Google Scholar
  23. 23.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford (1998)Google Scholar
  24. 24.
    Stewart, W.S.: Introduction to the Numerical Solution of Markov Chains. Princeton University Press, Princeton (1995)Google Scholar
  25. 25.
    Varga, R.S.: Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs (1962)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Gianna M. Del Corso
    • 1
  • Antonio Gullí
    • 1
    • 2
  • Francesco Romani
    • 1
  1. 1.Dipartimento di InformaticaUniversity of PisaItaly
  2. 2.IIT-CNRPisaItaly

Personalised recommendations