Applications of Regularized Least Squares to Classification Problems

  • Nicolò Cesa-Bianchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3244)

Abstract

We present a survey of recent results concerning the theoretical and empirical performance of algorithms for learning regularized least-squares classifiers. The behavior of these family of learning algorithms is analyzed in both the statistical and the worst-case (individual sequence) data-generating models.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Block, H.D.: The Perceptron: A model for brain functioning. Review of Modern Physics 34, 123–135 (1962)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cesa-Bianchi, N., Conconi, A., Gentile, C.: A second-order Perceptron algorithm. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS (LNAI), vol. 2375, pp. 121–137. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Cesa-Bianchi, N., Conconi, A., Gentile, C.: Learning probabilistic linearthreshold classifiers via selective sampling. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT/Kernel 2003. LNCS (LNAI), vol. 2777, pp. 373–387. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Cesa-Bianchi, N., Conconi, A., Gentile, C.: Regret bounds for hierarchical classification with linear-threshold functions. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 93–108. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Worst-case analysis of selective sampling for linear-threshold algorithms. Submitted for publication (2004)Google Scholar
  6. 6.
    Novikoff, A.B.J.: On convergence proofs of Perceptrons. In: Proceedings of the Symposium on the Mathematical Theory of Automata, vol. XII, pp. 615–622 (1962)Google Scholar
  7. 7.
    Rosenblatt, F.: The Perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1958)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Schölkopf, B., Smola, A.: Learning with kernels. MIT Press, Cambridge (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Nicolò Cesa-Bianchi
    • 1
  1. 1.Università di MilanoMilanoItaly

Personalised recommendations