Automatic Learning of Parallel Dependency Treelet Pairs

  • Yuan Ding
  • Martha Palmer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3248)

Abstract

Induction of synchronous grammars from empirical data has long been an unsolved problem; despite generative synchronous grammars theoretically suit the machine translation task very well. This fact is mainly due to pervasive structural divergences between languages. This paper presents a statistical approach that learns dependency structure mappings from parallel corpora. The new algorithm automatically learns parallel dependency treelet pairs from loosely matched non-isomorphic dependency trees while keeping computational complexity polynomial in the length of the sentences. A set of heuristics is introduced and specifically optimized for parallel treelet learning purposes using Minimum Error Rate training.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alshawi, H., Bangalore, S., Douglas, S.: Learning dependency translation models as collections of finite state head transducers. Computational Linguistics 26(1), 45–60 (2000)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bikel, D.M.: Design of a multi-lingual, parallel-processing statistical parsing engine. In: Proceedings of HLT 2002 (2002)Google Scholar
  3. 3.
    Brown, P.F., Cocke, J., Pietra, S.A.D., Pietra, V.J.D., Jelinek, F., Laferty, J.D., Mercer, R.L., Roossin, P.S.: A statistical approach to machine translation. Computational Linguistics 16(2), 79–85 (1990)Google Scholar
  4. 4.
    Brown, P.F., Pietra, S.A.D., Pietra, V.J.D., Mercer, R.L.: The mathematics of statistical machine translation: parameter estimation. Computa-tional Linguistics 19(2), 263–311 (1993)Google Scholar
  5. 5.
    Collins, M.J.: Head-driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia (1999)Google Scholar
  6. 6.
    Ding, Y., Gildea, D., Palmer, M.: An Algorithm for Word-level Alignment of Parallel Dependency Trees. In: Proceedings of the 9th Machine Translation Summit of Interna-tional Association of Machine Translation, New Orleans (2003)Google Scholar
  7. 7.
    Dorr, B.J.: Machine translation divergences: A formal description and proposed solution. Computational Linguistics 20(4), 597–633 (1994)Google Scholar
  8. 8.
    Fox, H.J.: Phrasal cohesion and statistical machine translation. In: Proceedings of EMNLP 2002, pp. 304-311 (2002)Google Scholar
  9. 9.
    Gildea, D.: Loosely tree based alignment for machine translation. In: Proceedings of ACL 2003 (2003)Google Scholar
  10. 10.
    Hajic, J., et al.: Natural language generation in the context of machine translation. In: Summer workshop final report, Center for Language and Speech Processing, Johns Hopkins University, Baltimore (2002)Google Scholar
  11. 11.
    Och, F.J.: Minimum Error Rate Training in Statistical Machine Translation. In: Proceedings of ACL 2003 (2003)Google Scholar
  12. 12.
    Shieber, S.M., Schabes, Y.: Synchronous Tree-Adjoining Grammars. In: Proceedings of the 13th COLING, August 1990, pp. 253–258 (1990)Google Scholar
  13. 13.
    Wu, D.: Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Linguistics 23(3), 3–403 (1997)Google Scholar
  14. 14.
    Xia, F.: Automatic grammar generation from two different perspectives. Ph.D. thesis, University of Pennsylvania, Philadelphia (2001)Google Scholar
  15. 15.
    Yamada, K., Knight, K.: A syntax based statistical translation model. In: Proceedings of ACL 2001, Toulouse, France (2001)Google Scholar
  16. 16.
    Yamada, K., Knight, K.: A decoder for syntax-based statistical MT. In: Proceedings of ACL 2002, Philadelphia (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Yuan Ding
    • 1
  • Martha Palmer
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations