Abstract

We describe proof planning: a technique for both describing the hierarchical structure of proofs and then using this structure to guide proof attempts. When such a proof attempt fails, these failures can be analyzed and a patch formulated and applied. We also describe rippling: a powerful proof method used in proof planning. We pose and answer a number of common questions about proof planning and rippling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Basin & Walsh, 1993]
    Basin, D.A., Walsh, T.: Difference unification. In: Bajcsy, R. (ed.) Proc. 13th Intern. Joint Conference on Artificial Intelligence (IJCAI 1993), vol. 1, pp. 116–122. Morgan Kaufmann, San Francisco (1993); Also available as Technical Report MPI-I-92-247, Max-Planck-Institut für InformatikGoogle Scholar
  2. [Basin & Walsh, 1996]
    Basin, D., Walsh, T.: A calculus for and termination of rippling. Journal of Automated Reasoning 16(1-2), 147–180 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. [Benzmüller et al, 1997]
    Benzmüller, C., Cheikhrouhou, L., Fehrer, D., Fiedler, A., Huang, X., Kerber, M., Kohlhase, K., Meier, A., Melis, E., Schaarschmidt, W., Siekmann, J., Sorge, V.: Ωmega: Towards a mathematical assistant. In: McCune, W. (ed.) 14th International Conference on Automated Deduction, pp. 252–255. Springer, Heidelberg (1997)Google Scholar
  4. [Boulton et al, 1998]
    Boulton, R., Slind, K., Bundy, A., Gordon, M.: An interface between CLAM and HOL. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS, vol. 1479, pp. 87–104. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. [Bundy & Green, 1996]
    Bundy, A., Green, I.: An experimental comparison of rippling and exhaustive rewriting. Research paper 836, Dept. of Artificial Intelligence, University of Edinburgh (December 1996)Google Scholar
  6. [Bundy & Lombart, 1995]
    Bundy, A., Lombart, V.: Relational rippling: a general approach. In: Mellish, C. (ed.) Proceedings of IJCAI, pp. 175–181 (1995)Google Scholar
  7. [Bundy, 1988]
    Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, R., Overbeek, R. (eds.) 9th International Conference on Automated Deduction, pp. 111–120. Springer, Heidelberg (1988); Longer version available from Edinburgh as DAI Research Paper No. 349CrossRefGoogle Scholar
  8. [Bundy, 1991]
    Bundy, A.: A science of reasoning. In: Lassez, J.-L., Plotkin, G. (eds.) Computational Logic: Essays in Honor of Alan Robinson, pp. 178–198. MIT Press, Cambridge (1991); Also available from Edinburgh as DAI Research Paper 445Google Scholar
  9. [Bundy, 2001]
    Bundy, A.: The automation of proof by mathematical induction. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  10. [Bundy, 2002]
    Bundy, A.: A Critique of Proof Planning, pp. 160–177. Springer, Heidelberg (2002)Google Scholar
  11. [Bundy et al, 1989]
    Bundy, A., van Harmelen, F., Hesketh, J., Smaill, A., Stevens, A.: A rational reconstruction and extension of recursion analysis. In: Sridharan, N.S. (ed.) Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, pp. 359–365. Morgan Kaufmann, San Francisco (1989); Also available from Edinburgh as DAI Research Paper 419Google Scholar
  12. [Bundy et al, 1990]
    Bundy, A., van Harmelen, F., Horn, C., Smaill, A.: The Oyster-Clam system. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 647–648. Springer, Heidelberg (1990); Also available from Edinburgh as DAI Research Paper 507Google Scholar
  13. [Bundy et al, 1993]
    Bundy, A., Stevens, A., van Harmelen, F., Ireland, A., Smaill, A.: Rippling: A heuristic for guiding inductive proofs. Artificial Intelligence 62, 185–253 (1993); Also available from Edinburgh as DAI Research Paper No. 567MATHCrossRefMathSciNetGoogle Scholar
  14. [Bundy et al, 2005]
    Bundy, A., Basin, D., Hutter, D., Ireland, A.: Rippling: Meta-level Guidance for Mathematical Reasoning. Cambridge University Press, Cambridge (2005)MATHCrossRefGoogle Scholar
  15. [Dennis et al, 2000]
    Dennis, L., Bundy, A., Green, I.: Making a productive use of failure to generate witness for coinduction from divergent proof attempts. Annals of Mathematics and Artificial Intelligence 29, 99–138 (2000); Also available as paper No. RR0004 in the Informatics Report SeriesMATHCrossRefMathSciNetGoogle Scholar
  16. [Desimone, 1989]
    Desimone, R.V.: Explanation-Based Learning of Proof Plans. In: Kodratoff, Y., Hutchinson, A. (eds.) Machine and Human Learning, Kogan Page (1989); Also available as DAI Research Paper 304. Previous version in proceedings of EWSL 1986 (1986)Google Scholar
  17. [Dixon & Fleuriot, 2003]
    Dixon, L., Fleuriot, J.D.: IsaPlanner: A prototype proof planner in Isabelle. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. [Duncan et al, 2004]
    Duncan, H., Bundy, A., Levine, J., Storkey, A., Pollet, M. (2004). The use of data-mining for the automatic formation of tactics. In: Workshop on Computer-Supported Mathematical Theory Development. IJCAR 2004 (2004)Google Scholar
  19. [Frank & Basin, 1998]
    Frank, I., Basin, D.: Search in games with incomplete information: A case study using bridge card play. Artificial Intelligence 100(1-2), 87–123 (1998)MATHCrossRefMathSciNetGoogle Scholar
  20. [Frank et al, 1992]
    Frank, I., Basin, D., Bundy, A.: An adaptation of proofplanning to declarer play in bridge. In: Proceedings of ECAI, pp. 72–76, Vienna, Austria (1992); Longer Version available from Edinburgh as DAI Research Paper No. 575Google Scholar
  21. [Gow, 2004]
    Gow, J.: The Dynamic Creation of Induction Rules Using Proof Planning. Unpublished Ph.D. thesis, Division of Informatics, University of Edinburgh (2004)Google Scholar
  22. [Hutter & Kohlhase, 1997]
    Hutter, D., Kohlhase, M.: A colored version of the λ-Calculus. In: McCune, W. (ed.) 14th International Conference on Automated Deduction, pp. 291–305. Springer, Heidelberg (1997); Also available as SEKI-Report SR-95- 05Google Scholar
  23. [Ireland & Bundy, 1996]
    Ireland, A., Bundy, A.: Productive use of failure in inductive proof. Journal of Automated Reasoning 16(1-2), 79–111 (1996); Also available from Edinburgh as DAI Research Paper No 716MATHCrossRefMathSciNetGoogle Scholar
  24. [Ireland, 1992]
    Ireland, A.: The Use of Planning Critics in Mechanizing Inductive Proofs. In: Voronkov, A. (ed.) LPAR 1992. LNCS (LNAI), vol. 624, pp. 178–189. Springer, Heidelberg (1992); Also available from Edinburgh as DAI Research Paper 592CrossRefGoogle Scholar
  25. [Jackson & Lowe, 2000]
    Jackson, M., Lowe, H.: XBarnacle: Making theorem provers more accessible. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, Springer, Heidelberg (2000)CrossRefGoogle Scholar
  26. [Kraan et al, 1996]
    Kraan, I., Basin, D., Bundy, A.: Middle-out reasoning for synthesis and induction. Journal of Automated Reasoning 16(1-2), 113–145 (1996); Also available from Edinburgh as DAI Research Paper 729.MATHCrossRefMathSciNetGoogle Scholar
  27. [Lowe & Duncan, 1997]
    Lowe, H., Duncan, D.: XBarnacle: Making theorem provers more accessible. In: McCune, W. (ed.) 14th International Conference on Automated Deduction, pp. 404–408. Springer, Heidelberg (1997)Google Scholar
  28. [Lowe et al, 1998]
    Lowe, H., Pechoucek, M., Bundy, A.: Proof planning for maintainable configuration systems. Artificial Intelligence in Engineering Design, Analysis and Manufacturing 12, 345–356 (1998); Special issue on configurationGoogle Scholar
  29. [Monroy et al, 1994]
    Monroy, R., Bundy, A., Ireland, A.: Proof Plans for the Correction of False Conjectures. In: Pfenning, F. (ed.) LPAR 1994. LNCS (LNAI), vol. 822, pp. 54–68. Springer, Heidelberg (1994); Also available from Edinburgh as DAI Research Paper 681Google Scholar
  30. [Silver, 1985]
    Silver, B.: Meta-level inference: Representing and Learning Control Information in Artificial Intelligence. North Holland, Amsterdam (1985); Revised version of the author’s PhD thesis, Department of Artificial Intelligence, U. of Edinburgh (1984)Google Scholar
  31. [Smaill & Green, 1996]
    Smaill, A., Green, I.: Higher-order annotated terms for proof search. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 399–414. Springer, Heidelberg (1997); Also available as DAI Research Paper 799Google Scholar
  32. [Stark & Ireland, 1998]
    Stark, J., Ireland, A.: Invariant discovery via failed proof attempts. In: Flener, P. (ed.) LOPSTR 1998. LNCS, vol. 1559, pp. 271–288. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  33. [Sterling et al, 1989]
    Sterling, L.: Bundy, Alan, Byrd, L., O’Keefe, R. and Silver, B. Solving symbolic equations with PRESS. J. Symbolic Computation 7, 71–84 (1989); Also available from Edinburgh as DAI Research Paper 171MATHCrossRefMathSciNetGoogle Scholar
  34. [Willmott et al, 2001]
    Willmott, S., Richardson, J.D.C., Bundy, A., Levine, J.M.: Applying adversarial planning techniques to Go. Journal of Theoretical Computer Science 252(1-2), 45–82 (2001); Special issue on algorithms, Automata, complexity and GamesMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Alan Bundy
    • 1
  1. 1.School of InformaticsUniversity of EdinburghEdinburghUK

Personalised recommendations