Verified Computer Algebra in Acl2

  • I. Medina-Bulo
  • F. Palomo-Lozano
  • J. A. Alonso-Jiménez
  • J. L. Ruiz-Reina
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3249)


In this paper, we present the formal verification of a Common Lisp implementation of Buchberger’s algorithm for computing Gröbner bases of polynomial ideals. This work is carried out in the Acl2 system and shows how verified Computer Algebra can be achieved in an executable logic.


Decision Procedure Computer Algebra Computer Algebra System Polynomial Ideal Proof Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  2. 2.
    Buchberger, B., Winkler, F. (eds.): Gröbner Bases and Applications. London Mathematical Society Series, vol. 251 (1998)Google Scholar
  3. 3.
    Coquand, T., Persson, H.: Gröbner Bases in Type Theory. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 33–46. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Geddes, K.O., Czapor, S.R., Labahn, G.: Algorithms for Computer Algebra. Kluwer, Dordrecht (1998)Google Scholar
  5. 5.
    Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Approach. Kluwer, Dordrecht (2000)Google Scholar
  6. 6.
    Kaufmann, M., Moore, J.S.: Structured Theory Development for a Mechanized Logic. Journal of Automated Reasoning 26(2), 161–203 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Martín, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz, J.L.: A Formal Proof of Dickson’s Lemma in ACL2. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS (LNAI), vol. 2850, pp. 49–58. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Medina, I., Alonso, J.A., Palomo, F.: Automatic Verification of Polynomial Rings Fundamental Properties in ACL2. ACL2 Workshop 2000. Department of Computer Sciences, University of Texas at Austin. TR–00–29 (2000)Google Scholar
  9. 9.
    Medina, I., Palomo, F., Alonso, J.A.: Implementation in ACL2 of Well-Founded Polynomial Orderings. In: ACL2 Workshop 2002 (2002)Google Scholar
  10. 10.
    Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative Algebra in the Mizar System. Journal of Symbolic Computation 32(1-2), 143–169 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ruiz, J.L., Alonso, J.A., Hidalgo, M.J., Martín, F.J.: Formal Proofs about Rewriting using ACL2. Annals of Mathematics and Artificial Intelligence 36(3), 239–262 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Sustyk, M.: Proof of Dickson’s Lemma Using the ACL2 Theorem Prover via an Explicit Ordinal Mapping. In: Fourth International Workshop on the ACL2 Theorem Prover and Its Applications (2003)Google Scholar
  13. 13.
    Théry, L.: A Machine-Checked Implementation of Buchberger’s Algorithm. Journal of Automated Reasoning 26(2), 107–137 (2001)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • I. Medina-Bulo
    • 1
  • F. Palomo-Lozano
    • 1
  • J. A. Alonso-Jiménez
    • 2
  • J. L. Ruiz-Reina
    • 2
  1. 1.Depto. de Lenguajes y Sistemas InformáticosUniv. de Cádiz, E.S. de Ingeniería de CádizCádizEspaña
  2. 2.Depto. de Ciencias de la Computación e Inteligencia ArtificialUniv. de Sevilla, E.T.S. de Ingeniería InformáticaSevillaEspaña

Personalised recommendations