Advertisement

An Algorithm for Calculating Process Similarity to Cluster Open-Source Process Designs

  • Kui Huang
  • Zhaotao Zhou
  • Yanbo Han
  • Gang Li
  • Jing Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3252)

Abstract

This paper proposes an algorithm for calculating process similarity in order to cluster process designs. A weighted graph is introduced for comparing processes in the intermediate form. The graph similarity is the weighted sum of similarity between sets of services and sets of service links that can be calculated based on the service similarity. The evaluation and application of the algorithm is discussed at the end of this paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balke, W.-T., Wagner, M.: Towards Personalized Selection of Web Services. In: Proceedings of the 12th International World Wide Web Conference (WWW 2003), Budapest, Hungary, ACM, New York (2003)Google Scholar
  2. 2.
    Han, Y., Geng, H., et al.: VINCA - A Visual and Personalized Business-Level Composition Language for Chaining Web-Based Services. In: Orlowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003. LNCS, vol. 2910, pp. 165–177. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    van Rijsbergen, C.J.: Chapter three automatic classification of book information retrieval. In: Measures of association (1999), http://www.dcs.gla.ac.uk/~iain/keith/data/pages/38.htm
  5. 5.
    Greco, G., Guzzo, A., Pontieri, L., Saccá, D.: Mining Expressive Process Models by Clustering Workflow Traces. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 52–62. Springer, Heidelberg (2004) (to appear)CrossRefGoogle Scholar
  6. 6.
    Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering. Internet Computing, IEEE 7(1), 76–80 (2003)CrossRefGoogle Scholar
  7. 7.
    Tomita, J., Kikui, G.: Interactive Web search by graphical query refinement, http://www10.org/cdrom/posters/1078.pdf
  8. 8.
    De Antonellis, V., Melchiori, M., Plebani, P.: An Approach to Web Service compatibility in cooperative processes. In: Proc. IEEE SAINT2003 of Int.Workshop on Services Oriented Computing: Models, Architectures and Application (SOC 2003), Orlando, Florida, USA (2003)Google Scholar
  9. 9.
    Intan, R., Mukaidono, M.: Degree of Similarity in Fuzzy Partition. In: AFSS International Conference on Fuzzy Systems, Calcutta, India, February 3-6 (2002)Google Scholar
  10. 10.
    van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow Patterns. Distributed and Parallel Databases 14(3), 5–51 (2003)CrossRefGoogle Scholar
  11. 11.
    Wohed, P., van der Aalst, W.M.P., Dumas, M., ter Hofstede, A.H.M.: Pattern-Based Analysis of BPEL4WS. QUT Technical report, FIT-TR-2002-04, Queensland University of Technology, Brisbane (2002)Google Scholar
  12. 12.
    Buckley, J.J., Eslami, E., Feuring, T.: Fuzzy Mathematics in Economics and Engineering (January 2002)Google Scholar
  13. 13.
    Holtkamp, B., Gartmann, R., et al.: FLAME 2008-Personalized Web Services for the Olympic Games 2008 in Beijing. In: Proceedings of eChallenges 2003, Bologna, Italy (October 2003)Google Scholar
  14. 14.
    Han, Y., et al.: CAFISE: An Approach Enabling On-Demand on figuration of Service Grid Applications. Journal of Computer Science and Technology 18(4) (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Kui Huang
    • 1
  • Zhaotao Zhou
    • 1
  • Yanbo Han
    • 1
  • Gang Li
    • 1
  • Jing Wang
    • 1
  1. 1.Institute of Computing Technology, Chinese Academy of SciencesGraduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations