Fundamental Theory for Typed Attributed Graph Transformation

  • Hartmut Ehrig
  • Ulrike Prange
  • Gabriele Taentzer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3256)


The concept of typed attributed graph transformation is most significant for modeling and meta modeling in software engineering and visual languages, but up to now there is no adequate theory for this important branch of graph transformation. In this paper we give a new formalization of typed attributed graphs, which allows node and edge attribution. The first main result shows that the corresponding category is isomorphic to the category of algebras over a specific kind of attributed graph structure signature. This allows to prove the second main result showing that the category of typed attributed graphs is an instance of “adhesive HLR categories”. This new concept combines adhesive categories introduced by Lack and Sobociński with the well-known approach of high-level replacement (HLR) systems using a new simplified version of HLR conditions. As a consequence we obtain a rigorous approach to typed attributed graph transformation providing as fundamental results the Local Church-Rosser, Parallelism, Concurrency, Embedding and Extension Theorem and a Local Confluence Theorem known as Critical Pair Lemma in the literature.


Fundamental Theory Graph Transformation Extension Theorem Critical Pair Graph Grammar 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey). In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS, vol. 73, pp. 1–69. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  2. 2.
    Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  3. 3.
    Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Concurrency, Parallelism and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  4. 4.
    Löwe, M., Korff, M., Wagner, A.: An Algebraic Framework for the Transformation of Attributed Graphs. In: Term Graph Rewriting: Theory and Practice, pp. 185–199. John Wiley and Sons Ltd., Chichester (1993)Google Scholar
  5. 5.
    Heckel, R., Küster, J., Taentzer, G.: Confluence of Typed Attributed Graph Transformation with Constraints. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 161–176. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Berthold, M., Fischer, I., Koch, M.: Attributed Graph Transformation with Partial Attribution. Technical Report 2000-2 (2000)Google Scholar
  7. 7.
    Ermel, C., Rudolf, M., Taentzer, G.: The AGG-Approach: Language and Tool Environment. In: Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, pp. 551–603. World Scientific, Singapore (1999)Google Scholar
  8. 8.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive High-Level Replacement Categories and Systems. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 144–160. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Lack, S., Sobociński, P.: Adhesive Categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and Concurrency in High-Level Replacement Systems. Math. Struct. in Comp. Science 1, 361–404 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Claßen, I., Löwe, M.: Scheme Evolution in Object Oriented Models: A Graph Transformation Approach. In: Proc. Workshop on Formal Methods at the ISCE 1995, Seattle, U.S.A. (1995)Google Scholar
  12. 12.
    Fischer, I., Koch, M., Taentzer, G., Volle, V.: Distributed Graph Transformation with Application to Visual Design of Distributed Systems. In: Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.) Handbook of Graph Grammars and Computing by Graph Transformation, vol. 3, pp. 269–340. World Scientific, Singapore (1999)Google Scholar
  13. 13.
    Bardohl, R.: A Visual Environment for Visual Languages. Science of Computer Programming (SCP) 44, 181–203 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Ehrig, H., Prange, U., Taentzer, G.: Fundamental Theory for Typed Attributed Graph Transformation: Long Version. Technical Report TU Berlin (2004)Google Scholar
  15. 15.
    Ehrig, H., Mahr, B.: Fundamentals of Algebraic Specification 1: Equations and Initial Semantics. EATCS Monographs on TCS, vol. 6. Springer, Berlin (1985)zbMATHGoogle Scholar
  16. 16.
    Schied, G.: Über Graphgrammatiken, eine Spezifikationsmethode für Programmiersprachen und verteilte Regelsysteme. Arbeitsber. des Inst. für math. Maschinen und Datenverarbeitung, PhD Thesis, University of Erlangen (1992)Google Scholar
  17. 17.
    Wagner, A.: A Formal Object Specification Technique Using Rule-Based Transformation of Partial Algebras. PhD thesis, TU Berlin (1997)Google Scholar
  18. 18.
    Llabres, M., Rossello, F.: Pushout Complements for Arbitrary Partial Algebras. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 131–144. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  19. 19.
    Große-Rhode, M.: Semantic Integration of Heterogeneuos Software Specifications. EATCS Monographs on Theoretical Computer Science. Springer, Berlin (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Hartmut Ehrig
    • 1
  • Ulrike Prange
    • 1
  • Gabriele Taentzer
    • 1
  1. 1.Technical University of BerlinGermany

Personalised recommendations