We introduce a constraint for one-dimensional bin packing. This constraint uses propagation rules incorporating knapsack-based reasoning, as well as a lower bound on the number of bins needed. We show that this constraint can significantly reduce search on bin packing problems. We also demonstrate that when coupled with a standard bin packing search strategy, our constraint can be a competitive alternative to established operations research bin packing algorithms.


Choice Point Small Item Spare Capacity Pruning Rule Item Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valerio de Carvalho, J.: Exact solution of bin-packing problems using column generation and branch-and-bound. Annals of Operations Research 86, 629–659 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Coffman Jr., E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: A survery. In: Hochbaum, D. (ed.) Appoximation algorithms for NP-Hard Problems, pp. 46–93. PWS Publishing, Boston (1996)Google Scholar
  3. 3.
    Falkenauer, E.: A hybrid grouping genetic algorithm for bin packing. Journal of Heuristics 2, 5–30 (1996)CrossRefGoogle Scholar
  4. 4.
    Friesen, D.K., Langston, M.A.: Variable sized bin packing. SIAM Journal on Computing 15, 222–230 (1986)zbMATHCrossRefGoogle Scholar
  5. 5.
    Gent, I., Walsh, T.: From approximate to optimal solutions: Constructing pruning and propagation rules. In: Proceedings of the 15th IJCAI (1997)Google Scholar
  6. 6.
    Gent, I.P.: Heuristic solution of open bin packing problems. Journal of Heuristics 3, 299–304 (1998)zbMATHCrossRefGoogle Scholar
  7. 7.
    ILOG S.A., Gentilly, France. ILOG Solver 6.0. User Manual (September 2003)Google Scholar
  8. 8.
    Johnson, D.S.: Fast algorithms for bin packing. Journal of Computer and System Sciences 8, 272–314 (1974)zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  10. 10.
    Korf, R.: A new algorithm for optimal bin packing. In: Proceedings of 18th AAAI, pp. 731–736 (2002)Google Scholar
  11. 11.
    Korf, R.: An improved algorithm for optimal bin packing. In: Proceedings of the 18th IJCAI, pp. 1252–1258 (2003)Google Scholar
  12. 12.
    Martello, S., Toth, P.: Knapsack problems. Wiley, Chichester (1990)zbMATHGoogle Scholar
  13. 13.
    Martello, S., Toth, P.: Lower bounds and reduction procedures for the bin packing problem. Discrete and Applied Mathematics 28(1), 59–70 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Régin, J.-C.: A filtering algorithm for constraints of difference in CSPs. In: Proceedings of the 12th AAAI. American Association for Artificial Intelligence, pp. 362–367. AAAI Press / The MIT Press (1994)Google Scholar
  15. 15.
    Scholl, A., Klein, R., Jürgens, C.: BISON: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem. Computers & Operations Research 24, 627–645 (1997)zbMATHCrossRefGoogle Scholar
  16. 16.
    Sellmann, M.: Approximated consistency for knapsack constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 679–693. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Trick, M.: A dynamic programming approach for consistency and propagation for knapsack constraints. In: Proceedings of CP-AI-OR 2001 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Paul Shaw
    • 1
  1. 1.ILOG S.A., Les Taissounieres HB2ValbonneFrance

Personalised recommendations