Using an Exact Radial Basis Function Artificial Neural Network for Impulsive Noise Suppression from Highly Distorted Image Databases

  • Pınar Çivicioğlu
  • Mustafa Alçı
  • Erkan Beṣdok
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3261)


In this paper, a new filter, RM, which is based on exact radial basis function artificial neural networks, is proposed for the impulsive noise suppression from highly distorted images. The RM uses Chi-Squared based goodness-of-fit test in order to find corrupted pixels more accurately.The proposed filter shows a high performance at the restoration of images distorted by impulsive noise. The extensive simulation results show that the proposed filter achieves a superior performance to the other filters mentioned in this paper in the cases of being effective in noise suppression and detail preservation, especially when the noise density is very high.


Radial Basis Function Radial Basis Function Network Impulse Noise Impulsive Noise Noise Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Breveglieri, L., Piuri, V.: Digital median filters. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 31, 191–206 (2002)zbMATHGoogle Scholar
  2. 2.
    Nodes, T.A., Gallagher, N.C.: Median filters: some modifications and their properties. IEEE Trans. Acoust., Speech, Signal Processing 30(5), 739–746 (1982)CrossRefGoogle Scholar
  3. 3.
    Sun, T., Neuvo, Y.: Detail-preserving median based filters in image processing. Pattern Recognit. Lett. 15, 341–347 (1994)CrossRefGoogle Scholar
  4. 4.
    Lin, H., Willson, A.N.: Median filter with adaptive length. IEEE Trans. Circuits Syst. 35, 675–690 (1988)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Tukey, J.W.: Nonlinear (nonsuperposable) methods for smoothing data. In: Cong. Rec. EASCON 1974, p. 673 (1974)Google Scholar
  6. 6.
    Wang, Z., Zhang, D.: Progressive switching median filter for the removal of impulse noise from highly corrupted images. IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing 46(1), 78–80 (1999)CrossRefGoogle Scholar
  7. 7.
    Abreu, E., et al.: A new efficient approach for the removal of impulse noise from highly corrupted images. IEEE Trans. Image Processing 5(6), 1012–1025 (1996)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Chen, T., Wu, H.R.: A new class of median based impulse rejecting filters. IEEE International Conference on Image Processing 1, 916–919 (2000)Google Scholar
  9. 9.
    Chen, T., et al.: Adaptive impulse detection using center weighted median filters. IEEE Signal Processing Letters 8(1), 1–3 (2001)CrossRefGoogle Scholar
  10. 10.
    Ko, S.J., Lee, Y.H.: Center weighted median filters and their applications to image enhancement. IEEE Trans. Circuits Systems II 43(3), 157–192 (1996)CrossRefGoogle Scholar
  11. 11.
    Russo, F., Ramponi, G.: A Fuzzy Filter for Images Corrupted By Impulse Noise. IEEE Signal Processing Letters 6(3), 168–170 (1996)CrossRefGoogle Scholar
  12. 12.
    Russo, F.: Evolutionary neural fuzzy systems for data filtering. In: IEEE Instrumentation and Measurement Technology Conference, vol. 2, pp. 826–830 (1998)Google Scholar
  13. 13.
    Potamitis, Fakotakis, N.D., Kokkinakis, G.: Impulsive noise suppression using neural networks. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 1871–1874 (2000)Google Scholar
  14. 14.
    Acosta, F.M.A.: Radial basis function and related models: An overview. In: Signal Processing, vol. 45, pp. 37–58. Elsevier Science Publishers, Amsterdam (1995)Google Scholar
  15. 15.
    Billings, S.A., Fung, C.F.: Recurrent radial basis function networks for adaptive noise cancellation. Neural Networks 8(2), 273–290 (1995)CrossRefGoogle Scholar
  16. 16.
    Cha, I., Kassam, S.A.: Channel equalization using adaptive complex radial basis function networks. IEEE Journal on Selected Areas in Communications 13(1), 122–131 (1995)CrossRefGoogle Scholar
  17. 17.
    Cha, Kassam, S.A.: Interference cancellation using radial basis function networks. Signal Processing 47, 247–268 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
    Chen, S.: Nonlinear time series modelling and prediction using Gaussian RBF networks with enhanced clustering and RLS learning. Electronics Letters 31(2), 117–118 (1995)CrossRefGoogle Scholar
  19. 19.
    Chen, S., Mulgrew, B., Grant, P.M.: A clustering technique for digital communications channel equalization using radial basis function networks. IEEE Transactions on Neural Networks 4(4), 570–579 (1993)CrossRefGoogle Scholar
  20. 20.
    Haykin, S.: Neural networks. Macmillan, New York (1994)zbMATHGoogle Scholar
  21. 21.
    MathWorks, MATLAB the language of technical computing, MATLAB Function Reference. The MathWorks, Inc., New York (2002)Google Scholar
  22. 22.
    Yang, T.Y.: Finite element structural analysis, pp. 446–449. Prentice Hall, Englewood Cliffs (1986)Google Scholar
  23. 23.
    Watson, D.F. (ed.): Contouring: A guide to the analysis and display of spacial data, pp. 101–161. Pergamon, New York (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pınar Çivicioğlu
    • 1
  • Mustafa Alçı
    • 2
  • Erkan Beṣdok
    • 3
  1. 1.Civil Aviation School, Avionics Dept.Erciyes UniversityKayseriTurkey
  2. 2.Engineering Faculty, Electronic Engineering Dept.Erciyes UniversityKayseriTurkey
  3. 3.Engineering Faculty, Geodesy and Photogrammetry Engineering Dept.Erciyes UniversityKayseriTurkey

Personalised recommendations