The Omphalos Context-Free Grammar Learning Competition

  • Bradford Starkie
  • François Coste
  • Menno van Zaanen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3264)


This paper describes the Omphalos Context-Free Grammar Learning Competition held as part of the International Colloquium on Grammatical Inference 2004. The competition was created in an effort to promote the development of new and better grammatical inference algorithms for context-free languages, to provide a forum for the comparison of different grammatical inference algorithms and to gain insight into the current state-of-the-art of context-free grammatical inference algorithms. This paper discusses design issues and decisions made when creating the competition. It also includes a new measure of the complexity of inferring context-free grammars, used to rank the competition problems.


Target Language Regular Language Derivation Tree Negative Data Negative Sentence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van Zaanen, M., Roberts, A., Atwell, E.: A multilingual parallel parsed corpus as gold standard for grammatical inference evaluation. In: Kranias, L., Calzolari, N., Thurmair, G., Wilks, Y., Hovy, E., Magnusdottir, G., Samiotou, A., Choukri, K. (eds.) Proceedings of the Workshop: The Amazing Utility of Parallel and Comparable Corpora, Lisbon, Portugal, May 2004, pp. 58–61 (2004)Google Scholar
  2. 2.
    Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  3. 3.
    Mark Gold, E.: Language identification in the limit. Information and Control 10, 447–474 (1967)zbMATHCrossRefGoogle Scholar
  4. 4.
    Starkie, B.: A complexity measure for the grammatical inference of context-free languages. Technical Report RLR8561, Telstra Research Laboratories, Clayton, Australia (2004)Google Scholar
  5. 5.
    Stolcke. Boogie. boogie.shar.Z (2003),
  6. 6.
    Nakamura, K., Matsumoto, M.: Incremental learning of context-free grammars. In: Sakakibara, Y., Kobayashi, S., Sato, K., Nishino, T., Tomita, E. (eds.) ICGI 2006. LNCS (LNAI), vol. 4201, pp. 23–25. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Cook, C.M., Rosenfeld, A., Aronson, A.R.: Grammatical inference by hill climbing. Informational Sciences 10, 59–80 (1976)MathSciNetGoogle Scholar
  8. 8.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley Publishing Company, Reading (2001)zbMATHGoogle Scholar
  9. 9.
    Denise, A., Sarron, F., Ponty, Y.: GenRGenS (2001),
  10. 10.
    Nederhof, M.-J.: Practical experiments with regular approximation of contextfree languages. Computational Linguistics 26(1), 17–44 (2000)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Otto, F.: On deciding the confluence of a finite string-rewriting system on a given congruence class. Journal of Computer and System Sciences 35, 285–310 (1987)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Bradford Starkie
    • 1
  • François Coste
    • 2
  • Menno van Zaanen
    • 3
  1. 1.Telstra Research LaboratoriesMelbourneAustralia
  2. 2.IRISARennesFrance
  3. 3.Tilburg UniversityTilburgThe Netherlands

Personalised recommendations