Introducing Domain and Typing Bias in Automata Inference

  • François Coste
  • Daniel Fredouille
  • Christopher Kermorvant
  • Colin de la Higuera
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3264)


Grammatical inference consists in learning formal grammars for unknown languages when given sequential learning data. Classically this data is raw: Strings that belong to the language and eventually strings that do not. In this paper, we present a generic setting allowing to express domain and typing background knowledge. Algorithmic solutions are provided to introduce this additional information efficiently in the classical state-merging automata learning framework. Improvement induced by the use of this background knowledge is shown on both artificial and real data.


Automata Inference Background Knowledge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Learning regular sets from queries and counterexamples. Information and Control 39, 337–350 (1987)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brill, E.: Some advances in rule-based part of speech tagging. In: Proc. National Conference on Artificial Intelligence (1994)Google Scholar
  3. 3.
    Cano, A., Ruíz, J., García, P.: Inferring subclasses of regular languages faster using RPNI and forbidden configurations. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 28–36. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Carrasco, R., Oncina, J.: Learning stochastic regular grammars by means of a state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 139–150. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Coste, F., Fredouille, D.: Efficient ambiguity detection in c-nfa, a step toward inference of non deterministic automata. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 25–38. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Coste, F., Fredouille, D.: Unambiguous automata inference by means of statemerging methods. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 60–71. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Machine Learning 27, 125–138 (1997)zbMATHCrossRefGoogle Scholar
  8. 8.
    Denis, F., Lemay, A., Terlutte, A.: Learning regular languages using rfsa. In: Proc. Int. Conf. on Alg. Learning Theory. LNCS, pp. 348–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Dupont, P., Miclet, L., Vidal, E.: What is the search space of the regular inference? In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862, pp. 25–37. Springer, Heidelberg (1994)Google Scholar
  10. 10.
    Goan, T., Benson, N., Etzioni, O.: A grammar inference algorithm for the world wide web. In: Proc. of AAAI Spring Symposium on Machine Learning in Information Access, AAAI Press, Menlo Park (1996)Google Scholar
  11. 11.
    Kermorvant, C., de la Higuera, C.: Learning languages with help. In: Adriaans, P.W., Fernau, H., van Zaanen, M. (eds.) ICGI 2002. LNCS (LNAI), vol. 2484, pp. 161–173. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Kermorvant, C., de la Higuera, C., Dupont, P.: Improving probabilistic automata learning with additional knowledge. In: Proc. of the IAPR International Workshops SSPR and SPR (2004)Google Scholar
  13. 13.
    Muggleton, S.: Inductive Logic Programming. In: The, M.I.T. (ed.) Encyclopedia of the Cognitive Sciences (MITECS), MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Oncina, J., Garía, P.: Identifying regular languages in polynomial time. In: Bunke, H. (ed.) Advances in Structural and Syntactic Pattern Recognition, vol. 5, pp. 99–108. World Scientific, Singapore (1992)Google Scholar
  15. 15.
    Oncina, J., Varó, M.A.: Using domain information during the learning of a subsequential transducer. In: Miclet, L., de la Higuera, C. (eds.) ICGI 1996. LNCS, vol. 1147, pp. 301–312. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  16. 16.
    Sakakibara, Y., Muramatsu, H.: Learning context-free grammars from partially structured examples. In: Oliveira, A.L. (ed.) ICGI 2000. LNCS (LNAI), vol. 1891, pp. 229–240. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • François Coste
    • 1
  • Daniel Fredouille
    • 2
  • Christopher Kermorvant
    • 3
  • Colin de la Higuera
    • 4
  1. 1.IRISARennesFrance
  2. 2.The Robert Gordon UniversityAberdeenUK
  3. 3.Dept. IROUniversité de MontréalCanada
  4. 4.EURISEUniversité Jean MonnetSt EtienneFrance

Personalised recommendations