Analysis of the Distribution of the Backoff Delay in 802.11 DCF: A Step Towards End-to-End Delay Guarantees in WLANs

  • Albert Banchs
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3266)


In this paper we present an analytical method to study the distribution of the backoff delay in an 802.11 DCF WLAN under saturation conditions. We show that, with our method, the probability that the delay is below a given threshold can be computed accurately and efficiently. We also discuss how our analysis can be used to perform admission control on the number of accepted stations in the WLAN in order to provide delay assurances to real-time applications.


Slot Time Medium Access Control Admission Control Medium Access Control Protocol Packet Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ziouva, E., Antonkopoulos, T.: CSMA/CA Performance under high traffic conditions: throughput and delay analysis. Computer Communications 25(1), 313–321 (2002)CrossRefGoogle Scholar
  2. 2.
    Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: Packet delay analysis of IEEE 802.11 MAC protocol. IEE Electronics Letters 39(18), 1358–1359 (2003)CrossRefGoogle Scholar
  3. 3.
    Li, B., Battiti, R.: Performance Analysis ofAn Enhanced IEEE 802.11 Distributed Coordination Function Supporting Service Differentiation. In: Karlsson, G., Smirnov, M. (eds.) QofIS 2003. LNCS, vol. 2811, pp. 152–161. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  4. 4.
    Tickoo, O., Sikdar, B.: Queueing Analysis and Delay Mitigation in IEEE 802.11 Random AccessMAC basedWireless Networks. In: Proceedings of IEEE INFOCOM 2004, Hong Kong, China (March 2004)Google Scholar
  5. 5.
    Zhai, H., Fang, Y.: Performance ofWireless LANs Based on IEEE 802.11MACProtocols. In: Proceedings of IEEE PIMRC 2003 (2003)Google Scholar
  6. 6.
    IEEE 802.11, Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) specifications, Standard, IEEE (August 1999)Google Scholar
  7. 7.
    Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: Performance of Reliable Transport Protocol over IEEE 802.11 Wireless LAN: Analysis and Enhancement. In: Proceedings of IEEE INFOCOM 2002, New York City, New York (June 2002)Google Scholar
  8. 8.
    Cali, F., Conti, M., Gregori, E.: Dynamic Tuning of the IEEE 802.11 Protocol to Achieve a Theoretical Throughput Limit. IEEE/ACM Transactions on Networking 8(6), 785–799 (2000)CrossRefGoogle Scholar
  9. 9.
    Bianchi, G.: Performance Analysis of the IEEE 802.11 Distributed Coordination Function. IEEE Journal on Selected Areas in Communications 18(3), 535–547 (2000)CrossRefGoogle Scholar
  10. 10.
    Claffy, K., Miller, G., Thompson, K.: The nature of the beast: Recent traffic measurements from an internet backbone. In: Proceedings of INET 1998, Geneve, Switzerland (July 1998)Google Scholar
  11. 11.
    Bruneel, H., Kim, B.: Discrete-Time Models for Communication Systems Including ATM. Kluwer Academic Publishers, Dordrecht (1993)Google Scholar
  12. 12.
    Kanodia, V., Li, C., Sadeghi, B., Sabharwal, A., Knightly, E.: Distributed Multi-Hop with Delay and Throughput Constraints. In: Proceedings of MOBICOM 2001, Rome, Italy (July 2001)Google Scholar
  13. 13.
    Sobrinho, J.L., Krishnakumar, A.S.: Real-Time Traffic over the IEEE 802.11 Medium Access Control Layer. Bell Labs Technical Journal (1996)Google Scholar
  14. 14.
    Chevrel, S., et al.: Analysis and optimisation of the HIPERLAN Channel Access Contention Scheme. Wireless Personal Communications 4, 27–39 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Albert Banchs
    • 1
  1. 1.Departamento de Ingeniería TelemáticaUniversidad Carlos III de Madrid 

Personalised recommendations