Advertisement

Policy-Based Resource Assignment in Utility Computing Environments

  • Cipriano A. Santos
  • Akhil Sahai
  • Xiaoyun Zhu
  • Dirk Beyer
  • Vijay Machiraju
  • Sharad Singhal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3278)

Abstract

In utility computing environments, multiple users and applications are served from the same resource pool. To maintain service level objectives and maintain high levels of utilization in the resource pool, it is desirable that resources be assigned in a manner consistent with operator policies, while ensuring that shared resources (e.g., networks) within the pool do not become bottlenecks. This paper addresses how operator policies (preferences) can be included in the resource assignment problem as soft constraints. We provide the problem formulation and use two examples of soft constraints to illustrate the method. Experimental results demonstrate impact of policies on the solution.

Keywords

Object Constraint Language Soft Constraint Hard Constraint Resource Pool Operator Policy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Zhu, X., Santos, C., Ward, J., Beyer, D., Singhal, S.: Resource assignment for large scale computing utilities using mathematical programming, HP Labs Technical Report, HPL-2003-243 (November 2003), http://www.hpl.hp.com/techreports/2003/HPL-2003-243R1.html
  2. 2.
    Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder policy specification language. In: Sloman, M., Lobo, J., Lupu, E.C. (eds.) POLICY 2001. LNCS, vol. 1995, pp. 18–38. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    PARLAY Policy Management, http://www.parlay.org/specs
  4. 4.
    Sahai, A., Singhal, S., Joshi, R., Machiraju, V.: Automated policy-based resource construction in utility computing environments. In: HPL-2003-176, Proceedings of IEEE/IFIP NOMS 2004 (2004)Google Scholar
  5. 5.
    Sahai, A., Singhal, S., Joshi, R., Machiraju, V.: Automated resource configuration generation using policies. In: Proceedings of IEEE/IFIP Policy 2004 (2004)Google Scholar
  6. 6.
    van Hentenryck, P.: Constraint Satisfaction in Logic Programming. The MIT Press, Cambridge (1989)Google Scholar
  7. 7.
    Raman, R., Livny, M., Solomon, M.: MatchMaking: Distributed Resource Management for High Throughput Computing. In: Proceedings of HPDC 1998 (1998)Google Scholar
  8. 8.
  9. 9.
    Menasce, D., Almeida, V., Riedi, R., Flavia, R., Fonseca, R., Meira Jr., W.: In Search of Invariants for E-Business Workloads. In: Proceedings of the 2nd ACM Conference on Electronic Commerce, Minneapolis, October 2000, pp. 56–65 (2000)Google Scholar
  10. 10.
    Wolsey, L.A.: Integer Programming. Wiley, Chichester (1998)zbMATHGoogle Scholar
  11. 11.
  12. 12.

Copyright information

© IFIP International Federation for Information Processing 2004

Authors and Affiliations

  • Cipriano A. Santos
    • 1
  • Akhil Sahai
    • 1
  • Xiaoyun Zhu
    • 1
  • Dirk Beyer
    • 1
  • Vijay Machiraju
    • 1
  • Sharad Singhal
    • 1
  1. 1.HP LaboratoriesPalo-AltoUSA

Personalised recommendations