Advertisement

Emergent Semantics Systems

  • Karl Aberer
  • Tiziana Catarci
  • Philippe Cudré-Mauroux
  • Tharam Dillon
  • Stephan Grimm
  • Mohand-Said Hacid
  • Arantza Illarramendi
  • Mustafa Jarrar
  • Vipul Kashyap
  • Massimo Mecella
  • Eduardo Mena
  • Erich J. Neuhold
  • Aris M. Ouksel
  • Thomas Risse
  • Monica Scannapieco
  • Fèlix Saltor
  • Luca de Santis
  • Stefano Spaccapietra
  • Steffen Staab
  • Rudi Studer
  • Olga De Troyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3226)

Abstract

With new standards like RDF or OWL paving the way for the much anticipated Semantic Web, a new breed of very large scale semantic systems is about to appear. Traditional semantic reconciliation techniques, dependent upon shared vocabularies or global ontologies, cannot be used in such open and dynamic environments. Instead, new heuristics based on emerging properties and local consensuses have to be exploited in order to foster semantic interoperability in the large. In this paper, we outline the main differences between traditional semantic reconciliation methods and these new heuristics. Also, we characterize the resulting emergent semantics systems and provide a couple of hints vis-à-vis their potential applications.

Keywords

Digital Library Description Logic Semantic Interoperability Lexical Resource Service Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Ouksel, M., Ahmed, I.: Ontologies are not the panacea in data integration: A flexible coordinator for context construction. Journal of Distributed and Parallel Databases 7, 1 (1999)Google Scholar
  2. 2.
    Ouksel, M.: In-context peer-to-peer information filtering on the web. SIGMOD Record 32, 3 (2003)CrossRefGoogle Scholar
  3. 3.
    Vincini, M., Bergamaschi, S., Castano, S., Beneventano, D.: Semantic integration of heterogeneous information sources. Data and Knowledge Engineering 36(3), 215–249Google Scholar
  4. 4.
    Madnick, S.E., Goh, C.H., Bressan, S., Siegel, M.D.: Context interchange: New features and formalisms for the intelligent integration of information. ACM Trans. on Information Systems 17(3), 270–293Google Scholar
  5. 5.
    Vassiliou, Y., Jarke, M., Lenzerini, M., Vassiliadis, P. (eds.): Fundamentals of Data Warehouses. Springer, Heidelberg (1999)Google Scholar
  6. 6.
    Garcia-Molina, H., Papakonstantinou, Y., Widom, J.: Object exchange across heterogeneous information sources. In: International Conference on Data Engineering, ICDE (1995)Google Scholar
  7. 7.
    Widom, J.: Special issue on materialized views and data warehousing. IEEE Bull. on Data Engineering 18(2) (1995)Google Scholar
  8. 8.
    Ullman, J.D.: Information integration using logical views. In: International Conference on Database Theory (ICDT), pp. 19–40 (1997)Google Scholar
  9. 9.
    De Giacomo, G., Calvanese, D., Lenzerini, M.: Answering queries using views in description logics. In: Proceedings of AAAI (2000)Google Scholar
  10. 10.
    Halevy, A.: Answering queries using views: a survey. VLDB Journal 10(4) (2001)Google Scholar
  11. 11.
    Friedman, M., Weld, D.S.: Efficiently executing information-gathering plans. In: International Joint Conference on Artificial Intelligence (1997)Google Scholar
  12. 12.
    Etzioni, O., Weld, D.: A softbot-based interface to the internet. Communications of the ACM 37(7), 72–76 (1994)CrossRefGoogle Scholar
  13. 13.
    Keller, M., Genesereth, M., Duschka, O.M.: Infomaster: an information integration system. In: ACM SIGMOD International Conference on Management of Data (1997)Google Scholar
  14. 14.
    Ordille, L.J., Rajaraman, A.: Querying heteregeneous information sources using source descriptions. In: International Conference on Very Large Data Bases, VLDB (1996)Google Scholar
  15. 15.
    Tate, A.: Advanced Planning Technology. AAAI Press, Menlo Park (1996)Google Scholar
  16. 16.
    Arens, Y., Knoblock, C.A.: Sims: Retrieving and integrating information from multiple sources. In: ACM SIGMOD International Conference on Management of Data (1993)Google Scholar
  17. 17.
    Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.: OBSERVER: An approach for query processing in global information systems based on interoperation across pre-existing ontologies. International journal on Distributed And Parallel Databases (DAPD) 8(2), 223–271 (2000)CrossRefGoogle Scholar
  18. 18.
    Castano, S., Corni, A., Guidetti, R., Malvezzi, G., Melchiori, M., Beneventano, D., Bergamaschi, S., Vincini, M.: Information integration: The momis project demonstration. In: International Conference on Very Large Data Bases, VLDB (2000)Google Scholar
  19. 19.
    Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Knowledge representation approach to information integration. In: AAAI workshop on AI and Information Integration, pp. 58–65 (1998)Google Scholar
  20. 20.
    Rousset, M., Reynaud, C.: Knowledge representation for information integration. Information Systems 29(1) (2004)Google Scholar
  21. 21.
    Guerrini, G., Bertino, E., Mesiti, M.: A matching algorithm for measuring the structural similarity between an xml document and a dtd and its applications. Information Systems 29(1), 23–46 (2004)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Ras, Z.W., Dardzinska, A.: Ontology-based distributed autonomous knowledge systems. Information Systems 29(1), 47–58 (2004)CrossRefGoogle Scholar
  23. 23.
    Salton, G., McGill, M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  24. 24.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press, New York (1999)Google Scholar
  25. 25.
    Garcia-Molina, H., Brandman, O., Cho, J., Shivakumar, N.: Crawler-friendly web servers. In: Workshop on Performance and Architecture of Web Servers, PAWS (2000)Google Scholar
  26. 26.
    Terzi, V.E., Hacid, M.S.: Knowledge representation, ontologies and semantic web. In: Asia-Pacific Web Conference, APWeb (2003)Google Scholar
  27. 27.
    Aberer, K., Cudre-Mauroux, P., Hauswirth, M.: A framework for semantic gossiping. SIGMOD Record 31(4) (2002)Google Scholar
  28. 28.
    Ouksel, M., Naiman, C.: Coordinating context building in heterogeneous information systems. Journal of Intelligent Information Systems 3(1), 151–183 (1994)CrossRefGoogle Scholar
  29. 29.
    Ouksel, M.: A Framework for a Scalable Agent Architecture of Cooperating Heterogeneous Knowledge Sources. Springer, Heidelberg (1999)Google Scholar
  30. 30.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human-Computer Studie 43(5-6), 907–928Google Scholar
  31. 31.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. In: International World Wide Web Conference, WWW (1998)Google Scholar
  32. 32.
    Heylighen, F.: Principia cybernetica web, http://pespmc1.vub.ac.be
  33. 33.
    Camazine, S., et al.: Self Organization in Biological Systems. Princeton University Press, Princeton (2001)Google Scholar
  34. 34.
    Kohonen, T.: Self Organising and Associative Memory. Springer, Heidelberg (1989)Google Scholar
  35. 35.
    Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. of Sciences 79, 2554–2558 (1982)CrossRefMathSciNetGoogle Scholar
  36. 36.
    Kennedy, J., Eberhart, R., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Academic Press, San Francisco (2001)Google Scholar
  37. 37.
    Albert, R., Barabasi, A.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2001)CrossRefMathSciNetGoogle Scholar
  38. 38.
    Goldhaber, M.: The attention economy and the net. First Monday 2(4) (1997)Google Scholar
  39. 39.
    Martinoli, A., Mondada, F.: Probabilistic modelling of a bio-inspired collective experiment with real robots. In: Proceeding of the Third International Symposium on Distributed Autonomous Robotic SystemsGoogle Scholar
  40. 40.
    Aberer, K., Grid, P.: CoopIS 2001. LNCS, vol. 2172, pp. 179–185 (2001)Google Scholar
  41. 41.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable content addressable network. In: Proceedings of ACM SIGCOMM 2001 (2001)Google Scholar
  42. 42.
    Weiss, G. (ed.): Multiagent Systems. MIT Press, Cambridge (2000)Google Scholar
  43. 43.
    Aberer, K., Datta, A., Hauswirth, M.: The quest for balancing peer load in structured peer-to-peer systems. Technical report ic/2003/32, EPFL (2003)Google Scholar
  44. 44.
    Datta, A., Hauswirth, M., Aberer, K.: Updates in highly unreliable, replicated peer-to-peer systems. In: Proceedings of the 23rd International Conference on Distributed Computing Systems, ICDCS2003, Providence, Rhode Island, USA (2003)Google Scholar
  45. 45.
    McCool, R., Guha, R.V.: Tap, building the semantic web, http://tap.stanford.edu/
  46. 46.
    Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: The Chatty Web: Emergent Semantics Through Gossiping. In: International World Wide Web Conference, WWW (2003)Google Scholar
  47. 47.
    Aberer, K., Cudré-Mauroux, P., Hauswirth, M.: Start making sense: The ChattyWeb approach for global semantic agreements. Journal of Web Semantics 1(1) (2003)Google Scholar
  48. 48.
    Iyengar, V.S., Apte, C., Zhang, T.: Active learning using adaptive resampling. In: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 91–98. ACM Press, New York (2000)CrossRefGoogle Scholar
  49. 49.
    Hearst, M.A.: Automatic acquisition of hyponyms from large text corpora. In: Proceedings of the 14th International Conference on Computational Linguistics (1992)Google Scholar
  50. 50.
    Charniak, E., Berland, M.: Finding parts in very large corpora. In: Proceedings of the 37th Annual Meeting of the ACL, pp. 57–64 (1999)Google Scholar
  51. 51.
    Mädche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16(2), 72–79 (2001)CrossRefGoogle Scholar
  52. 52.
    Googlism (2003), http://www.googlism.com
  53. 53.
    Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. IEEE Computer 35(3), 66–70 (2002)Google Scholar
  54. 54.
    Glover, E.J., Tsioutsiouliklis, K., Lawrence, S., Pennock, D.M., Flake, G.W.: Using web structure for classifying and describing web pages. In: Proceedings of the eleventh international conference on World Wide Web, pp. 562–569. ACM Press, New York (2002)CrossRefGoogle Scholar
  55. 55.
    Spiliopoulou, M.: Web usage mining for web site evaluation. Commun. ACM 43(8), 127–134 (2000)CrossRefGoogle Scholar
  56. 56.
    Grefenstette, G.: The WWW as a resource for example-based MT tasks. In: Proceedings of ASLIB 1999 Translating and the Computer 21 (1999)Google Scholar
  57. 57.
    Agirre, E., Ansa, O., Hovy, E., Martinez, D.: Enriching Very Large Ontologies using the WWW. In: Workshop on Ontology Construction of the ECAI (2000)Google Scholar
  58. 58.
    Keller, F., Lapata, M., Ourioupina, O.: Using the web to overcome data sparseness. In: Proceedings of EMNLP 2002, pp. 230–237 (2002)Google Scholar
  59. 59.
    Markert, K., Modjeska, N., Nissim, M.: Using the web for nominal anaphora resolution. In: EACL Workshop on the Computational Treatment of Anaphora (2003)Google Scholar
  60. 60.
    Chakrabarti, S.: Data mining for hypertext: a tutorial survey. ACM SIGKDD Explorations Newsletter 1(2), 1–11 (2000)CrossRefGoogle Scholar
  61. 61.
    Cimiano, P., Handschuh, S., Staab, S.: Towards the self-annotating web (2003) (Submitted for publication)Google Scholar
  62. 62.
    Maedche, A.: Ontology Learning for the Semantic Web. Kluwer Academic Publishers, Dordrecht (2002)zbMATHGoogle Scholar
  63. 63.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)zbMATHCrossRefGoogle Scholar
  64. 64.
    Behrens, C., Kashyap, V.: The “emergent” semantic web: A consensus approach for deriving semantic knowledge on the web. In: proceedings of the International of the Semantic Web Working Symposium (SWWS), Stanford University, California, USA 2001 (2001)Google Scholar
  65. 65.
    Cohen, E., Fiat, A., Kaplan, H.: Associative search in peer to peer networks: Harnessing latent semantics. IEEE INFOCOM (2003)Google Scholar
  66. 66.
    Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Building an integrated ontology within sewasie system. In: Semantic Web and Data Bases (SWDB) Workshop (2003)Google Scholar
  67. 67.
    Guarino, N.: Formal ontology in information systems. In: International Conference On Formal Ontolog. In: Information Systems, FOIS (1998)Google Scholar
  68. 68.
    Bylander, T., Chandrasekaran, B.: Generic tasks in knowledge-based reasoning: The right level of abstraction for knowledge acquisition. Knowledge Acquisition for Knowledge Based Systems 1, 65–77 (1988)Google Scholar
  69. 69.
    Newell, A.: The knowledge level. Artificial Intelligence 18(1) (1982)Google Scholar
  70. 70.
    Miller, G.A.: Wordnet: A lexical database for english. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  71. 71.
    Jarrar, M., Demey, J., Meersman, R.: On using conceptual data modeling for ontology engineering. In: Spaccapietra, S., March, S., Aberer, K. (eds.) Journal on Data Semantics I. LNCS, vol. 2800, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  72. 72.
    Jarrar, M., Meersman, R.: Formal ontology engineering in the dogma approach. In: International Conference on Ontologies, Databases and Applications of Semantics, ODBase (2002)Google Scholar
  73. 73.
    Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.: The lorel query language for semistructured data. Int. J. on Digital Libraries 1(1), 68–88 (1997)Google Scholar
  74. 74.
    Resource description framework (rdf) model and syntax specification, 1999. W3C Recommendation, February 22 (1999), http://www.w3.org/RDF/
  75. 75.
    Rdf vocabulary description language 1.0: Rdf schema (2003), W3C Working Draft. October 10 (2003), http://www.w3.org/RDF/
  76. 76.
    Owl web ontology language reference (2003), W3C Candidate Recommendation . August 18 (2003), http://www.w3.org/TR/owl-ref/
  77. 77.
    Pease, A., Niles, I.: Ieee standard upper ontology: A progress report. Knowledge Engineering Review, Special Issue on Ontologies and Agents 17, 65–70Google Scholar
  78. 78.
    Bozsak, E., Ehrig, M., Handschuh, S., Hotho, A., Maedche, A., Motik, B., Oberle, D., Schmitz, C., Staab, S., Stojanovic, L., Stojanovic, N., Studer, R., Stumme, G., Sure, Y., Tane, J., Volz, R., Zacharias, V.: Kaon - towards a large scale semantic web. In: Bauknecht, K., Tjoa, A.M., Quirchmayr, G. (eds.) EC-Web 2002. LNCS, vol. 2455, pp. 304–313. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  79. 79.
    Lenzerini, M.: Data Integration: A Theoretical Perspective. In: 21st ACM Symposium on Principles of Database Systems (PODS (2002)Google Scholar
  80. 80.
    Ehrig, M., Haase, P., van Harmelen, F., Siebes, R., Staab, S., Stuckenschmidt, H., Studer, R., Tempich, C.: The swap data and metadata model for semanticsbased peer-to-peer systems. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.) MATES 2003. LNCS (LNAI), vol. 2831, pp. 144–155. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  81. 81.
    Siebes, R., van Harmelen, F.: Ranking agent statements for building evolving ontologies. In: Proceedings of the AAAI-02 workshop on meaning negotiation, Alberta, Canada,July 28 2002 (2002)Google Scholar
  82. 82.
    Tempich, C., Staab, S., Wranik, A.: REMINDIN’: Semantic query routing in peer-to-peer networks based on social metaphors. In: International World Wide Web Conference (WWW), New York, USA (2004)Google Scholar
  83. 83.
    Aberer, K., Hauswirth, M.: Peer-to-peer information systems: Concepts and models, state-of-the-art, and future systems. In: 18th International Conference on Data Engineering (ICDE), San Jose, California (2002)Google Scholar
  84. 84.
    Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.: Peer-to-peer computing. Technical report, HPL (2002)Google Scholar
  85. 85.
    Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. IEEE Computer Journal 30(4), 68–74 (1997)Google Scholar
  86. 86.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic web services. IEEE Intelligent Systems 16(2), 46–53 (2001)CrossRefGoogle Scholar
  87. 87.
    Berardi, D., Calvanese, D., DeGiacomo, G., Lenzerini, M., Mecella, M.: Eservice composition by description logics based reasoning. In: Proceedings of the International Workshop on Description Logics (2003)Google Scholar
  88. 88.
    Eberhart, A.: Ad-hoc invocation of semantic web services. In: Proceedings of the IEEE International Conference on Web Services, San Diego (2004)Google Scholar
  89. 89.
    Paolucci, M., Kawmura, T., Payne, T., Sycara, K.: Semantic matching of web services capabilities. In: First Int. Semantic Web Conf. (2002)Google Scholar
  90. 90.
    Trastour, D., Bartolini, C., Preist, C.: Semantic web support for the businessto- business e-commerce lifecycle. In: Proceedings of the eleventh international conference on World Wide Web, pp. 89–98. ACM Press, In: conference on World Wide Web (2002)CrossRefGoogle Scholar
  91. 91.
    OWL Service Coalition. OWL-S: Semantic Markup for Web Services (November 2003) http://www.daml.org/services/owl-s/1.0/.
  92. 92.
    Web Service Modeling Ontology, http://wsmo.org/
  93. 93.
    Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web technology. In: Proceedings of the twelfth international conference on World Wide Web, pp. 331–339. ACM Press, New York (2003)CrossRefGoogle Scholar
  94. 94.
    Di Noia, T., Di Sciascio, E., Donini, F.M., Mongiello, M.: A system for principled matchmaking in an electronic marketplace. In: Proceedings of the twelfth international conference on World Wide Web, pp. 321–330. ACM Press, New York (2003)CrossRefGoogle Scholar
  95. 95.
    Bricks - Building Resources for Integrated Cultural Knowledge Services, EU-IST 507457, http://www.brickscommunity.org/
  96. 96.
    Ouksel, M.: Emergent semantics and in-context peer-to-peer information filtering and model calibration on the web. In: Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data, Sanibel Island, Florida (2003)Google Scholar
  97. 97.
    Ouksel, M., Mackay, D.S.: Environmental modeling within a scalable multiagent architecture for semantic cooperation amongst autonomous and heterogeneous information sources. In: NSF Proposal 1004213-9978386 (PI: A. M. Ouksel). UIC-IDS-CRIM/Tech-Report 99-07 (1999)Google Scholar
  98. 98.
    Robinson, V.B., Frank, A.U.: About different kinds of uncertainty in collections of spatial data. In: Auto-Carto 7, American Society for Phtogrammetry and Remote Sensing and American Congress on Surveying and Mapping, Falls Church, VA (1985)Google Scholar
  99. 99.
    Worboys, M.F., Deen, S.M.: Semantic heterogeneity in distributed geographic databases. ACM SIGMOD Record 20(4) (1991)Google Scholar
  100. 100.
    Roman, G.C.: Formal specification of geographic data processing requirements. IEEE Transactions on Knowledge and Data Engineering 2(4) (1990)Google Scholar
  101. 101.
    Mackay, D.S.: Semantic integration of environmental models for application to global information and decision-making. ACM SIGMOD Record 28(1) (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Karl Aberer
    • 1
  • Tiziana Catarci
    • 2
  • Philippe Cudré-Mauroux
    • 1
  • Tharam Dillon
    • 3
  • Stephan Grimm
    • 4
  • Mohand-Said Hacid
    • 5
  • Arantza Illarramendi
    • 6
  • Mustafa Jarrar
    • 7
  • Vipul Kashyap
    • 8
  • Massimo Mecella
    • 2
  • Eduardo Mena
    • 9
  • Erich J. Neuhold
    • 1
    • 10
  • Aris M. Ouksel
    • 1
    • 11
  • Thomas Risse
    • 1
    • 10
  • Monica Scannapieco
    • 2
  • Fèlix Saltor
    • 1
    • 12
  • Luca de Santis
    • 2
  • Stefano Spaccapietra
    • 1
  • Steffen Staab
    • 4
  • Rudi Studer
    • 4
  • Olga De Troyer
    • 7
  1. 1.Swiss Federal Institute of Technology (EPFL)Switzerland
  2. 2.Univ. of Roma La SapienzaItaly
  3. 3.Univ. of TechnologySydneyAustralia
  4. 4.Univ. of KarlsruheGermany
  5. 5.Univ. of Lyon 1France
  6. 6.Univ. of the Basque CountrySpain
  7. 7.Vrije University of BrusselsBelgium
  8. 8.National Library of MedicineUSA
  9. 9.Univ. of ZaragozaSpain
  10. 10.Fraunhofer IPSIGermany
  11. 11.Univ. of Illinois at ChicagoUSA
  12. 12.Univ. Politècnica de CatalunyaSpain

Personalised recommendations