Semantic Information Interoperability in Open Networked Systems

  • Silvana Castano
  • Alfio Ferrara
  • Stefano Montanelli
  • Gianpaolo Racca
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3226)


In open networked systems, each node shares part of its informational resources on the network and is responsible of providing an ontological description for them. To enable semantic information interoperability in networked contexts with a multitude of autonomous ontologies, appropriate matching techniques are required to determine semantic mappings between concepts of different ontologies. In this paper, we describe H-Match, an algorithm for dynamically performing ontology matching in open networked contexts. H-Match provides several matching models and metrics to work at different levels of depth, with different degrees of flexibility and accuracy, thus supporting semantic interoperability in a flexible way.


Semantic Relation Contextual Feature Semantic Mapping Ontology Match Intensive Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Broekstra, J., et al.: A Metadata Model for Semantics-Based Peer-to-Peer Systems. In: Proc. of the 1st WWW Int. Workshop on Semantics in Peer-to-Peer and Grid Computing (SemPGRID 2003), Budapest, Hungary (2003)Google Scholar
  2. 2.
    Nejdl, W., et al.: EDUTELLA: a P2P Networking Infrastructure Based on RDF. In: Proc. of the 11th Int. World Wide Web Conference (WWW 2002), Honolulu, Hawaii, USA (2002)Google Scholar
  3. 3.
    Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema Mediation in Peer Data Management Systems. In: Proc. of the 19th Int. Conference on Data Engineering (ICDE 2003), Bangalore, India, IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  4. 4.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)Google Scholar
  5. 5.
    Motik, B., Maedche, A., Volz, R.: A Conceptual Modeling Approach for Semantics- Driven Enterprise Applications. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA 2002, and ODBASE 2002. LNCS, vol. 2519, pp. 1082–1099. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Bouquet, P., Magnini, B., Serafini, L., Zanobini, S.: A SAT-based Algorithm for Context Matching. In: Proc. of the 4th Int. and Interdisciplinary Conference on Modeling and Using Context (CONTEXT 2003), pp. 66–79. Springer, Stanford (2003)Google Scholar
  7. 7.
    Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Map between Ontologies on the Semantic Web. In: Proc. of the 11th Int. World Wide Web Conference (WWW 2002), Honolulu, Hawaii, USA, pp. 662–673 (2002)Google Scholar
  8. 8.
    Castano, S., Ferrara, A., Montanelli, S., Zucchelli, D.: HELIOS: a General Framework for Ontology-based Knowledge Sharing and Evolution in P2P Systems. In: Proc. of the 2nd DEXA Int. Workshop on Web Semantics (WEBS 2003), Prague, Czech Republic, IEEE Computer Society, Los Alamitos (2003)Google Scholar
  9. 9.
    Smith, M.K., Welty, C., McGuinness, D.L. (eds.): OWL Web Ontology Language Guide (2004)Google Scholar
  10. 10.
    Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM (CACM) 38(11), 39–41 (1995)CrossRefGoogle Scholar
  11. 11.
    Lauer, M.: Designing Statistical Language Learners: Experiments on Noun Compounds. PhD thesis, Macquaire University, Australia (1995)Google Scholar
  12. 12.
    Ouksel, A.M., Naiman, C.F.: Coordinating Context Building in Heterogeneous Information Systems. Journal of Intelligent Information Systems 3, 151–183 (1994)CrossRefGoogle Scholar
  13. 13.
    Castano, S., De Antonellis, V., De Capitani Di Vimercati, S.: Global Viewing of Heterogeneous Data Sources. IEEE Transactions on Knowledge and Data Engineering 13, 277–297 (2001)CrossRefGoogle Scholar
  14. 14.
    Castano, S., Ferrara, A., Montanelli, S., Racca, G.: Matching Techniques for Resource Discovery in Distributed Systems Using Heterogeneous Ontology Descriptions. In: Proc. of the Int. Conference on Coding and Computing (ITCC 2004), IEEE Computer Society, Las Vegas (2004)Google Scholar
  15. 15.
    Castano, S., Ferrara, A., Montanelli, S., Pagani, E., Rossi, G.P., Tebaldi, S.: On Combining a Semantic Engine and Flexible Network Policies for P2P Knowledge Sharing Networks. In: Proc of the 1st DEXA Workshop on Grid and Peer-to-Peer Computing Impacts on Large Scale Heterogeneous Distributed Database Systems, GLOBE 2004 (2004)Google Scholar
  16. 16.
    Madhavan, J., Bernstein, A., Rahm, P.,, E.: Generic Schema Matching with Cupid. In: Proc. of the 27th Int. Conference on Very Large Data Bases (VLDB 2001), Rome, Italy, pp. 49–58 (2001)Google Scholar
  17. 17.
    Madhavan, J., Bernstein, P.D.P.A., Halevy, A. Y.: Representing and Reasoning about Mappings between Domain Models. In: Proc. of the 18th National Conference on Artificial Intelligence and 14th Conference on Innovative Applications of Artificial Intelligence, Edmonton, Alberta, Canada, pp. 80–86. AAAI Press, Menlo Park (2002)Google Scholar
  18. 18.
    Furnas, G.W.: Generalized fisheye views. In: Proc. of the SIGCHI conference on Human factors in computing systems, Boston, Massachusetts, United States, pp. 16–23. ACM Press, New York (1986)Google Scholar
  19. 19.
    Mukherjea, S., Hara, Y.: Focus+context views of world-wide web nodes. In: Proc. of the eighth ACM conference on Hypertext, Southampton, United Kingdom, pp. 187–196. ACM Press, New York (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Silvana Castano
    • 1
  • Alfio Ferrara
    • 1
  • Stefano Montanelli
    • 1
  • Gianpaolo Racca
    • 1
  1. 1.DICoUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations