Graph-Theoretic Analysis of Kautz Topology and DHT Schemes

  • Dongsheng Li
  • Xicheng Lu
  • Jinshu Su
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3222)

Abstract

Many proposed distributed hash table (DHT) schemes for peer-to-peer network are based on some traditional parallel interconnection topologies. In this paper, we show that the Kautz graph is a very good static topology to construct DHT schemes. We demonstrate the optimal diameter and optimal fault tolerance properties of the Kautz graph and prove that the Kautz graph is (1+o(1))-congestion-free when using the long path routing algorithm. Then we propose FissionE, a novel DHT scheme based on Kautz graph. FissionE is a constant degree, O(log N) diameter and (1+o(1))-congestion-free. FissionE shows that the DHT scheme with constant degree and constant congestion can achieve O(log N) diameter, which is better than the lower bound Ω(N1/d) conjectured before.

References

  1. 1.
    Ratnasamy, S., Shenker, S., Stoica, I.: Routing algorithms for DHTs: some open questions. In: IPTPS 2002. LNCS, vol. 2429, p. 45. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Stoica, I., Morris, R., Karger, D., et al.: Chord: a scalable peer-to-peer lookup service for Internet applications. In: Proc. of ACM SIGCOMM 2001, pp. 160–177. ACM Press, New York (2001)Google Scholar
  3. 3.
    Ratnasamy, S., Francis, P., Handley, M., et al.: A scalable content-addressable network. In: Proc. of ACM SIGCOMM 2001, pp. 149–160. ACM Press, New York (2001)Google Scholar
  4. 4.
    Kaashoek, F., Karger, D.R.: Koorde: A simple degree-optimal hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Fraigniaud, P., Gauron, P.: The Content-Addressable Network D2B. Tech Rept. 1349, CNRS University paris-Sud, France (2003)Google Scholar
  6. 6.
    Malkhi, D., Naor, M., Ratajczak, D.: Viceroy: a scalable and dynamic lookup network. In: Proc. of 21st ACM Symp. on Principles of Distributed Computing (PODC), Monterey, CA (2002)Google Scholar
  7. 7.
    Xu Jun, Kumar Abhishek, Yu Xingxing: On the fundamental tradeoffs between routing table size and network diameter in peer-to-peer networks. IEEE Journal on Selected Areas in Communications (JSAC), No.1 (2004)Google Scholar
  8. 8.
    Dongsheng, L., Xinxin, F., Yijie, W., et al.: A scalable peer-to-peer network with constant degree. In: Zhou, X., et al. (eds.) APPT 2003. LNCS, vol. 2834, pp. 414–425. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Panchapakesan, G., Sengupta, A.: On a lightwave network topology using Kautz digraphs. IEEE Transaction on computers 48(10), 1131–1138 (1999)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bridges, W.G., Toueg, S.: On the impossibility of directed Moore graphs. Journal of Combinatorial theory, series B 29, 330–341 (1980)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Loguinov, D., Kumar, A., Rai, V., et al.: Graph-Theoretic Analysis of Structured Peer-to-Peer Systems: Routing Distances and Fault Resilience. In: Proc. of ACM SIGCOMM 2003, pp. 395–406. ACM Press, Karlsruhe (2003)Google Scholar
  12. 12.
    Sivarajan, K.N., Ramaswami, R.: Lightwave Networks based on de Bruijn Graphs. IEEE/ACM Trans. Networking 2, 70–79 (1994)CrossRefGoogle Scholar
  13. 13.
    Wei-kuo, C., Rong-Jaye, C.: Distributed Fault-Tolerant Routing in Kautz Networks. Journal of parallel and distributed computing 20, 99–106 (1994)CrossRefMATHGoogle Scholar
  14. 14.
    Dongsheng, L., et al.: FissionE: A Scalable Constant degree and constant-congestion Peer-to-Peer Network. Tech Rept. PDL-2003-14, National University of Defense technology (2003)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2004

Authors and Affiliations

  • Dongsheng Li
    • 1
  • Xicheng Lu
    • 1
  • Jinshu Su
    • 1
  1. 1.School of ComputerNational University of Defense TechnologyChangshaP.R. China

Personalised recommendations