Comparing Real Algebraic Numbers of Small Degree

  • Ioannis Z. Emiris
  • Elias P. Tsigaridas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3221)

Abstract

We study polynomials of degree up to 4 over the rationals or a computable real subfield. Our motivation comes from the need to evaluate predicates in nonlinear computational geometry efficiently and exactly. We show a new method to compare real algebraic numbers by precomputing generalized Sturm sequences, thus avoiding iterative methods; the method, moreover handles all degenerate cases. Our first contribution is the determination of rational isolating points, as functions of the coefficients, between any pair of real roots. Our second contribution is to exploit invariants and Bezoutian subexpressions in writing the sequences, in order to reduce bit complexity. The degree of the tested quantities in the input coefficients is optimal for degree up to 3, and for degree 4 in certain cases. Our methods readily apply to real solving of pairs of quadratic equations, and to sign determination of polynomials over algebraic numbers of degree up to 4. Our third contribution is an implementation in a new module of library synaps v2.1. It improves significantly upon the efficiency of certain publicly available implementations: Rioboo’s approach on axiom, the package of Guibas-Karavelas-Russel [11], and core v1.6, maple v9, and synaps v2.0. Some existing limited tests had shown that it is faster than commercial library leda v4.5 for quadratic algebraic numbers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, vol. 10. Springer, Heidelberg (2003)MATHGoogle Scholar
  2. 2.
    Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Mehlhorn, K., Schömer, E.: A computational basis for conic arcs and boolean operations on conic polygons. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 174–186. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Bikker, P., Uteshev, A.Y.: On the Bézout construction of the resultant. J. Symbolic Computation 28(1-2), 45–88 (1999)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cremona, J.E.: Reduction of binary cubic and quartic forms. LMS J. Computation and Mathematics 2, 62–92 (1999)MathSciNetGoogle Scholar
  5. 5.
    Deviller, O., Fronville, A., Mourrain, B., Teillaud, M.: Algebraic methods and arithmetic filtering for exact predicates on circle arcs. Comp. Geom: Theory & Appl., Spec. Issue 22, 119–142 (2002)Google Scholar
  6. 6.
    Dos Reis, G., Mourrain, B., Rouillier, R., Trébuchet, P.: An environment for symbolic and numeric computation. In: Proc. of the International Conference on Mathematical Software 2002, pp. 239–249. World Scientific, Singapore (2002)Google Scholar
  7. 7.
    Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization of the intersection of quadrics. In: Proc. Annual ACM Symp. on Comp. Geometry, June 2003, pp. 246–255. ACM Press, New York (2003)Google Scholar
  8. 8.
    Emiris, I., Kakargias, A., Teillaud, M., Tsigaridas, E., Pion, S.: Towards an open curved kernel. In: Proc. Annual ACM Symp. on Computational Geometry, pp. 438–446. ACM Press, New York (2004)Google Scholar
  9. 9.
    Emiris, I.Z., Tsigaridas, E.P.: Comparison of fourth-degree algebraic numbers and applications to geometric predicates. Tech. Rep ECG-TR-302206-03, INRIA Sophia-Antipolis (2003)Google Scholar
  10. 10.
    Emiris, I.Z., Tsigaridas, E.P.: Methods to compare real roots of polynomials of small degree. Tech. Rep ECG-TR-242200-01, INRIA Sophia-Antipolis (2003)Google Scholar
  11. 11.
    Guibas, L., Karavelas, M., Russel, D.: A computational framework for handling motion. In: Proc. 6th Workshop (ALENEX) (January 2004) (to appear)Google Scholar
  12. 12.
    Hemmer, M., Schömer, E., Wolpert, N.: Computing a 3-dimensional cell in an arrangement of quadrics: Exactly and actually! In: Proc. Annual ACM Symp. Comput. Geometry, pp. 264–273 (2001)Google Scholar
  13. 13.
    Kaplan, D., White, J.: Polynomial equations and circulant matrices. The Mathematical Association of America (Monthly) 108, 821–840 (2001)Google Scholar
  14. 14.
    Karavelas, M., Emiris, I.: Root comparison techniques applied to the planar additively weighted Voronoi diagram. In: Proc. Symp. on Discrete Algorithms (SODA- 2003), January 2003, pp. 320–329 (2003)Google Scholar
  15. 15.
    Keyser, J., Culver, T., Manocha, D., Krishnan, S.: ESOLID: A system for exact boundary evaluation. Comp. Aided Design 36(2), 175–193 (2004)CrossRefGoogle Scholar
  16. 16.
    Lazard, D.: Quantifier elimination: optimal solution for two classical examples. J. Symb. Comput. 5(1-2), 261–266 (1988)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Rioboo, R.: Real algebraic closure of an ordered field: implementation in axiom. In: Proc. Annual ACM ISSAC, pp. 206–215. ACM Press, New York (1992)Google Scholar
  18. 18.
    Rouillier, F., Zimmermann, P.: Efficient isolation of a polynomial real roots. Technical Report 4113, INRIA–Lorraine (2001)Google Scholar
  19. 19.
    Salmon, G.: Lessons Introductory to the Modern Higher Algebra. Chelsea Publishing Company, New York (1885)Google Scholar
  20. 20.
    Schmitt, S.: The diamond operator for real algebraic numbers. Technical Report ECG-TR-243107-01, MPI Saarbrücken (2003) Google Scholar
  21. 21.
    Sederberg, T.W., Chang, G.-Z.: Isolating the real roots of polynomials using isolator polynomials. In: Bajaj, C. (ed.) Algebraic Geometry and Applications, Springer, Heidelberg (1993)Google Scholar
  22. 22.
    Weispfenning, V.: Quantifier elimination for real algebra–the cubic case. In: Proc. Annual ACM ISSAC, pp. 258–263. ACM Press, New York (1994)Google Scholar
  23. 23.
    Yang, L.: Recent advances on determining the number of real roots of parametric polynomials. J. Symbolic Computation 28, 225–242 (1999)MATHCrossRefGoogle Scholar
  24. 24.
    Yap, C.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ioannis Z. Emiris
    • 1
  • Elias P. Tsigaridas
    • 1
  1. 1.Department of Informatics and TelecommunicationsNational Kapodistrian University of AthensGreece

Personalised recommendations