On the Evolution of Selfish Routing

  • Simon Fischer
  • Berthold Vöcking
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3221)


We introduce a model to study the temporal behaviour of selfish agents in networks. So far, most of the analysis of selfish routing is concerned with static properties of equilibria which is one of the most fundamental paradigms in classical Game Theory. By adopting a generalised approach of Evolutionary Game Theory we extend the model of selfish routing to study the dynamical behaviour of agents.

For symmetric games corresponding to singlecommodity flow, we show that the game converges to a Nash equilibrium in a restricted strategy space. In particular we prove that the time for the agents to reach an ε-approximate equilibrium is polynomial in ε and only logarithmic in the ratio between maximal and optimal latency. In addition, we present an almost matching lower bound in the same parameters.

Furthermore, we extend the model to asymmetric games corresponding to multicommodity flow. Here we also prove convergence to restricted Nash equilibria, and we derive upper bounds for the convergence time that are linear instead of logarithmic.


Nash Equilibrium Average Latency Evolutionary Stable Replicator Dynamic Evolutionary Game Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cole, R., Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: STOC 2003, pp. 521–530 (2003)Google Scholar
  2. 2.
    Czumaj, A., Berhold, V.: Tight bounds for worst-case equilibria. In: Proc. 13th SODA, San Francisco, pp. 413–420 (2002)Google Scholar
  3. 3.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria (2004) (to appear)Google Scholar
  4. 4.
    Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Gairing, M., Luecking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for scheduling on restricted parallel links. In: Proc. of the STOC 2004 (2004)Google Scholar
  6. 6.
    Haurie, A.B., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, p. 404. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Mavronicolas, M., Spirakis, P.G.: The price of selfish routing. In: Proc. of STOC 2001, pp. 510–519 (2001)Google Scholar
  9. 9.
    Maynard Smith, J., Price, G.R.: The logic of animal conflict. Nature 246, 15–18 (1973)CrossRefGoogle Scholar
  10. 10.
    Mitzenmacher, M.: How useful is old information? In: Proc. of the PODC 1997, pp. 83–91 (1997)Google Scholar
  11. 11.
    Nash, J.F.: Equilibrium points in n-person games. In: Proc. of National Academy of Sciences, vol. 36, pp. 48–49 (1950)Google Scholar
  12. 12.
    Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, 65–67 (1973)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49(2), 236–259 (2002)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Weibull, J.W.: Evolutionary Game Theory. MIT Press, Cambridge (1995)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Simon Fischer
    • 1
  • Berthold Vöcking
    • 1
  1. 1.FB Informatik, LS2University of DortmundDortmundGermany

Personalised recommendations