Faster Fixed-Parameter Tractable Algorithms for Matching and Packing Problems

  • Michael R. Fellows
  • C. Knauer
  • N. Nishimura
  • P. Ragde
  • F. Rosamond
  • U. Stege
  • Dimitrios M. Thilikos
  • S. Whitesides
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3221)


We obtain faster algorithms for problems such as r-dimensional matching, r-set packing, graph packing, and graph edge packing when the size k of the solution is considered a parameter. We first establish a general framework for finding and exploiting small problem kernels (of size polynomial in k). Previously such a kernel was known only for triangle packing. This technique lets us combine, in a new and sophisticated way, Alon, Yuster and Zwick’s color-coding technique with dynamic programming on the structure of the kernel to obtain faster fixed-parameter algorithms for these problems. Our algorithms run in time O(n+2 O(k)), an improvement over previous algorithms for some of these problems running in time O(n+k O(k)). The flexibility of our approach allows tuning of algorithms to obtain smaller constants in the exponent.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ADP80]
    Ausiello, G., D’Atri, A., Protasi, M.: Structure preserving reductions among context optimization problems. Journal of Computer and System Sciences 21, 136–153 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [AYZ95]
    Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the Association for Computing Machinery 42(4), 844–856 (1995)zbMATHMathSciNetGoogle Scholar
  3. [CFJ04]
    Chor, B., Fellows, M.R., Juedes, D.: Linear kernels in linear time, or how to save k colors in O(n2) steps. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. [CFJK01]
    Chen, J., Friesen, D.K., Jia, W., Kanj, I.: Using nondeterminism to design deterministic algorithms. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 120–131. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. [Coo71]
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual Symposium on the Theory of Computing, pp. 151–158 (1971)Google Scholar
  6. [Fel03]
    Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [FHR+04]
    Fellows, M.R., Heggernes, P., Rosamond, F.A., Sloper, C., Telle, J.A.: Exact algorithms for finding k disjoint triangles in an arbitrary graph. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 235–244. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. [FKS82]
    Fredman, M.L., Komlós, J., Szemerédi, E.: Storing a sparse table with o(1) worst-case access time. In: Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer Science, pp. 165–169 (1982)Google Scholar
  9. [Hol81]
    Holyer, I.: The NP-completeness of some edge-partition problems. SIAM Journal on Computing 10(4), 713–717 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [JZC04]
    Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. Journal of Algorithms 50(1), 106–117 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [Kar72]
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)Google Scholar
  12. [Mar04]
    Marx, D.: Parameterized complexity of constraint satisfaction problems. In: Proceedings of the 19th Annual IEEE Conference on Computational Complexity (2004)Google Scholar
  13. [MPS04]
    Mathieson, L., Prieto, E., Shaw, P.: Packing edge disjoint triangles: a parameterized view. In: Proceedings of the International Workshop on Parameterized and Exact Computation (2004)Google Scholar
  14. [PS04]
    Prieto, E., Sloper, C.: Looking at the stars. In: Proceedings of the International Workshop on Parameterized and Exact Computation (2004)Google Scholar
  15. [SvEB85]
    Slot, C.F., van Emde Boas, P.: On tape versus core; an application of space efficient perfect hash functions to the invariance of space. Elektronische Informationsverarbeitung und Kybernetik 21(4/5), 246–253 (1985)MathSciNetGoogle Scholar
  16. [Woe03]
    Woeginger, G.J.: Exact algorithms for NP-hard problems, a survey. In: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization - Eureka, You Shrink! LNCS, vol. 2570, pp. 185–207. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael R. Fellows
    • 1
  • C. Knauer
    • 2
  • N. Nishimura
    • 3
  • P. Ragde
    • 3
  • F. Rosamond
    • 1
  • U. Stege
    • 4
  • Dimitrios M. Thilikos
    • 5
  • S. Whitesides
    • 6
  1. 1.School of Electrical Engineering and Computer ScienceUniversity of NewcastleAustralia
  2. 2.Institute of Computer ScienceFreie Universität BerlinGermany
  3. 3.School of Computer ScienceUniversity of WaterlooCanada
  4. 4.Department of Computer ScienceUniversity of VictoriaCanada
  5. 5.Departament de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaSpain
  6. 6.School of Computer ScienceMcGill UniversityCanada

Personalised recommendations