Advertisement

A Multi-dimensional Taxonomy for Automating Hinting

  • Dimitra Tsovaltzi
  • Armin Fiedler
  • Helmut Horacek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3220)

Abstract

Hints are an important ingredient of natural language tutorial dialogues. Existing models of hints, however, are limited in capturing their various underlying functions, since hints are typically treated as a unit directly associated with some problem solving script or discourse situation. Putting emphasis on making cognitive functions of hints explicit and allowing for automatic incorporation in a natural dialogue context, we present a multi-dimensional hint taxonomy where each dimension defines a decision point for the associated function. Hint categories are then conceived as convergent points of the dimensions. So far, we have elaborated four dimensions: (1) domain knowledge, (2) inferential role, (3) elicitation status, (4) problem referential perspective. These fine-grained distinctions support the constructive generation of hint specifications from modular knowledge sources.

Keywords

Cognitive Load Inference Rule Teaching Model Relevant Concept Tutoring System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ashley, K.D., Desai, R., Levine, J.M.: Teaching case-based argumentation concpets using dialoectic arguments vs. didactic explanations. In: Proceedings of the 6th International Conference on Intelligent Tutoring Systems, pp. 585–595 (2002)Google Scholar
  2. 2.
    Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: Tutorial dialogs on mathematical proofs. In: Proceedings of the IJCAI Workshop on Knowledge Representation and Automated Reasoning for E-Learning Systems, Acapulco, pp. 12–22 (2003)Google Scholar
  3. 3.
    Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I., Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: A Wizard-of-Oz experiment for tutorial dialogues in mathematics. In: aied03 Supplementary Proceedings, Workshop on Advanced Technologies for Mathematics Education, Sidney, Australia, pp. 471–481 (2003)Google Scholar
  4. 4.
    Berry, D., Broadbent, D.: On the relationship between task performance and the associated verbalizable knowledge. Quarterly Journal of Experimental Psychology 36(A), 209–231 (1984)Google Scholar
  5. 5.
    Chi, M.T.H., Glaser, R., Rees, E.: Expertise in problem solving. Advances in the Psychology of Human Intelligence, 7–75 (1982)Google Scholar
  6. 6.
    Chi, M.T.H., de Leeuw, N., Chiu, M.-H., Lavancher, C.: Eliciting self-explanation improves understanding. Cognitive Science 18, 439–477 (1994)Google Scholar
  7. 7.
    Fiedler, A., Gabsdil, M., Horacek, H.: A Tool for Supporting Progressive Refinement ofWizard-of-Oz Experiments in Natural Language. In: Intelligent Tutoring Systems — 6th International Conference, ITS 2002 (2004) (in print)Google Scholar
  8. 8.
    Fiedler, A., Tsovaltzi, D.: Automating hinting in mathematical tutorial dialogue. In: Proceedings of the EACL 2003 Workshop on Dialogue Systems: Interaction, Adaptation and Styles of Management, Budapest, pp. 45–52 (2003)Google Scholar
  9. 9.
    Heffernan, N.T., Koedinger, K.R.: Building a 3rd generation ITS for symbolization: Adding a tutorial model with multiple tutorial strategies. In: Proceedings of the ITS 2000 Workshop on Algebra Learning, Montréal, Canada (2000)Google Scholar
  10. 10.
    Hume, G., Michael, J., Rovick, A., Evens, M.: Student responses and follow up tutorial tactics in an ITS. In: Proceedings of the 9th Florida Artificial Intelligence Research Symposium, KeyWest, FL, pp. 168–172 (1996)Google Scholar
  11. 11.
    Hume, G.D., Michael, J.A., Allen, R.A., Evens, M.W.: Hinting as a tactic in one-on-one tutoring. Journal of the Learning Sciences 5(1), 23–47 (1996)CrossRefGoogle Scholar
  12. 12.
    Lewicki, P., Hill, T., Czyzewska, M.: Nonconscious acquisition of information. Journal of American Psychologist 47, 796–801 (1992)CrossRefGoogle Scholar
  13. 13.
    Lim, E.L., Moore, D.W.: Problem solving in geometry: Comparing the effects of non-goal specific instruction and conventional worked examples. Journal of Educational Psychology 22(5), 591–612 (2002)CrossRefGoogle Scholar
  14. 14.
    Matsuda, N., VanLehn, K.: Modelling hinting strategies for geometry theorem proving. In: Proceedings of the 9th International Conference on User Modeling, Pittsburgh, PA (2003)Google Scholar
  15. 15.
    Melis, E., Ullrich, C.: How to Teach it - Polya-Inspired Scenarios In ActiveMath. In: Proceedings of, Biarritz, France, pp. 141–147 (2003)Google Scholar
  16. 16.
    Moore, J.: What makes human explanations effective? In: Proceedings of the Fifteenth Annual Meeting of the Cognitive Science Society, Hillsdale, NJ (1993)Google Scholar
  17. 17.
    Person, N.K., Graesser, A.C., Harter, D., Mathews, E., The Tutoring Research Group: Dialog move generation and conversation management in AutoTutor. In: Rosé, C.P., Freedman, R. (eds.) Building Dialog Systems for Tutorial Applications—Papers from the AAAI Fall Symposium, North Falmouth, MA, pp. 45–51. AAAI press, Menlo Park (2000)Google Scholar
  18. 18.
    Rosé, C.P., Moore, J.D., VanLehn, K., Allbritton, D.: A comparative evaluation of socratic versus didactic tutoring. In: Moore, J., Stenning, K. (eds.) Proceedings 23rd Annual Conference of the Cognitive Science Society, University of Edinburgh, Scotland (2001)Google Scholar
  19. 19.
    Siekmann, J., Benzmüller, C., Brezhnev, V., Cheikhrouhou, L., Fiedler, A., Franke, A., Horacek, H., Kohlhase, M., Meier, A., Melis, E., Moschner, M., Normann, I., Pollet, M., Sorge, V., Ullrich, C., Wirth, C.-P., Zimmer, J.: Proof development with Ω MEGA. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 144–149. Springer, Heidelberg (2002)Google Scholar
  20. 20.
    Sweller, J.: Cognitive technology: Some procedures for facilitating learning and problem solving in mahtematics and science. Journal Educational Psychology 81, 457–466 (1989)CrossRefGoogle Scholar
  21. 21.
    Tsovaltzi, D., Fiedler, A.: An approach to facilitating reflection in a mathematics tutoring system. In: aied03 Supplementary Proceedings,Workshop on Learner Modelling for Reflection, Sydney, Australia, pp. 278–287 (2003)Google Scholar
  22. 22.
    Tsovaltzi, D., Fiedler, A.: Enhancement and use of a mathematical ontology in a tutorial dialogue system. In: Proceedings of the IJCAI Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Acapulco, Mexico, pp. 19–28 (2003)Google Scholar
  23. 23.
    Tsovaltzi, D., Karagjosova, E.: A dialogue move taxonomy for tutorial dialogues. In: Proceedings of 5th SIGdialWorkshop on Discourse and Dialogue, Boston, USA (2004) (in print)Google Scholar
  24. 24.
    Weiner, B.: Human Motivation: metaphor, theories, and research. Sage Publications Inc., Thousand Oaks (1992)Google Scholar
  25. 25.
    Wilson, B., Cole, P.: Cognitive teaching models. In: Jonassen, D.H. (ed.) Handbook of Research for educational communications and technology, MacMillan, Basingstoke (1996)Google Scholar
  26. 26.
    Wu, H.: What is so difficult about the preparation of mathematics teachers. In: National Summit on the Mathematical Education of Teachers: Meeting the Demand for High Quality Mathematics Education in America (November 2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Dimitra Tsovaltzi
    • 1
  • Armin Fiedler
    • 1
  • Helmut Horacek
    • 1
  1. 1.Department of Computer ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations