Adaptive Interface Methodology for Intelligent Tutoring Systems

  • S. Glória Curilem
  • Fernando M. de Azevedo
  • Andréa R. Barbosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3220)


In a Teaching-Learning Process (TLP) teachers have to support student’s learning using diverse pedagogical resources. One of teachers’ task is to create personalized Learning Environments. Intelligent Tutoring Systems (ITS) try to imitate adaptation capacity of a human teacher. The Interface is the Learning Environment and the system stores knowledge that defines how to adapt it to respond to certain student’s characteristics. Adaptation is particularly important for TLP oriented to carriers of chronic diseases like Diabetes, which represent very heterogeneous groups of persons. This article presents a Methodology to model a TLP and to build an automatic adaptation (adaptive) mechanism for ITS Interfaces, based in a Neural Network [1]. The diabetes education was used as a case study to apply and validate the proposed methodology. The most important results of this work are presented here.


Intelligent Tutor System Pedagogical Software Pedagogical Conception Multiple Intelligence Diabetes Mellitus Insulin Depend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Curilem, G.M.J.: Metodologia para a Implementação de Interfaces Adaptativas em Sistemas Tutores Inteligentes. Doctoral Thesis. Dpt. of Electrical Engineering Federal University of Santa Catarina.), Florianópolis, Brasil (2002) Google Scholar
  2. 2.
    Brusilovsky, P.: Methods and techniques of adaptive hypermedia. In: Brusilovsky, P., Kobsa, A., Vassileva, J. (eds.) Adaptive Hypertext and Hypermedia, pp. 1–43. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  3. 3.
    Wenger, E.: Artificial intelligence and Tutoring Systems. Computational and Cognitive Approaches to the Communication of Knowledge. Morgan Kaufmann, San Francisco (1987)Google Scholar
  4. 4.
    Bruillard, E.: Les Machines a Enseigner, Editions Hermes, Paris (1997)Google Scholar
  5. 5.
    Briceño, L.R.: Siete tesis sobre la educación sanitaria para la participación comunitaria. Cad. Saúde Públ. 12(1), 7–30, Rio de Janeiro (1996)Google Scholar
  6. 6.
    Zagury, L., Zagury, T.: Diabetes sem medo, Ed. Rocco Ltda (1984) Google Scholar
  7. 7.
    Curilem, G.M.J., Brasil, L.M., Sandoval, R.C.B., Coral, M.H.C., De Azevedo, F.M., Marques, J.L.B.: Considerations for the Design of a Tutoring System Applied to Diabetes. In: Proceedings of World Congress on Biomedical Engineering, Chicago, USA, July 25-27 (2000)Google Scholar
  8. 8.
    Rouet, J.F.: Cognition et Technologies d’Apprentissage, (Setembro 2001)
  9. 9.
    Curilem, G.M.J., De Azevedo, F.M.: Didactic Ergonomy for the Interface of Intelligent Tutoring Systems in Computers and Education: Toward a Lifelong Learning Society, pp. 75–88. Kluwer Academic Publishers, Dordrecht (2003)Google Scholar
  10. 10.
    Choplin, H., Galisson, A., Lemarchand, S.: Hipermedias et pedagogie: Comment promouvoir l’activité de l’élève? Congrès Hypermedia et Apprentissage. Poitiers, France (1998)Google Scholar
  11. 11.
    Gagne, R.M., Briggs, L.J., Wagner, W.W.: Principles of instructional design, 3rd edn. Holt Rinehart and Winston, New York (1988)Google Scholar
  12. 12.
    Piaget, J.: A psicologia da Inteligência. Editora Fundo de Cultura S.A Lisboa (1967) Google Scholar
  13. 13.
    Felder, R.M.: Matters of Styles ASEE Prism 6(4), 18–23 (1996)Google Scholar
  14. 14.
    Gardner, H.: Multiple Intelligences: The Theory in Practice. Basic Books, NY (1993)Google Scholar
  15. 15.
    Curilem, G.M.J., De Azevedo, F.M.: Implementação Dinâmica de Atividades num Sistema Tutor Inteligente. In: Proceedings of the XII Brazilian Symposium of Informatics in Education, SBIE2001, Vitória, ES, Brasil, November 21-23 (2001)Google Scholar
  16. 16.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, Languages and Computation. Addison-Wesley, Reading (1979)zbMATHGoogle Scholar
  17. 17.
    Rumelhart, D.E., McClelland, J.L.: Explorations in Distributed Processing. A Handbook of Models, Programs and Exercises, Ed. Bradford Book. Massachusetts Institute of Technology (1989)Google Scholar
  18. 18.
    De Azevedo, F.M.: Contribution to the Study of Neural Networks in Dynamical Expert System, PhD Thesis – Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • S. Glória Curilem
    • 1
  • Fernando M. de Azevedo
    • 2
  • Andréa R. Barbosa
    • 2
  1. 1.Electrical Engineering DepartmentLa Frontera UniversityTemucoChile
  2. 2.Biomedical Engineering Institute. Electrical Engineering DepartmentUniversidade Federal de Santa Catarina. Campus TrindadeFlorianópolis/Brasil

Personalised recommendations