Evaluating Dialogue Schemata with the Wizard of Oz Computer-Assisted Algebra Tutor

  • Jung Hee Kim
  • Michael Glass
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3220)

Abstract

The Wooz tutor of the North Carolina A&T algebra tutorial dialogue project is a computer program that mediates keyboard-to-keyboard tutoring of algebra problems, with the feature that it can suggest to the tutor canned structures of tutoring goals and canned sentences to insert into the tutoring dialogue. It is designed to facilitate and record a style of tutoring where the tutor and student collaboratively construct an answer in the form of an equation, a style often attested in natural tutoring of algebra. The algebra tutoring dialogue project collects and analyzes these dialogues with the aim of describing tutoring strategies and language with enough rigor that they may be evaluated and incorporated in machine tutoring. By plugging our analyzed dialogues into the computer-suggested tutoring component of the Wooz tutor we can evaluate the fitness of our dialogue analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Patel, N., Glass, M., Kim, J.H.: Data Collection Applications for the NC A&T State University Algebra Tutoring Dialogue (Wooz Tutor) Project. In: Fourteenth Midwest Artificial Intelligence and Cognitive Science Conference (MAICS 2003), Cincinnati (2003)Google Scholar
  2. 2.
    Heffernan, N.T.: Intelligent Tutoring Systems are Forgotten the Tutor: Adding a Cognitive Model of Human Tutors. Ph.D. diss, Computer Science Department, School of Computer Science, Carnegie Mellon University. Technical Report CMU-CS-01-127 (2001)Google Scholar
  3. 3.
    McArthur, D., Stasz, C., Zmuidzinas, M.: Tutoring Techniques in Algebra. Cognition and Instruction 7, 197–244 (1990)CrossRefGoogle Scholar
  4. 4.
    Fox, B.: The Human Tutorial Dialogue Project. Lawrence Erlbaum Associates, Mahwah (1993)Google Scholar
  5. 5.
    Graesser, A.C., Person, N.K., Magliano, J.P.: Collaborative Dialogue Patterns in Naturalistic One-to-One Tutoring. Applied Cognitive Psychology 9, 495–522 (1995)CrossRefGoogle Scholar
  6. 6.
    Person, N., Graesser, A.C.: Fourteen Facts about Human Tutoring: Food for Thought for ITS Developers. In: Hoppe, H.U., Verdejo, M.F., Kay, J. (eds.) Artificial Intelligence in Education (Eleventh International Conference, AIED-2003, Sidney, Australia), IOS Press, Amsterdam (2003)Google Scholar
  7. 7.
    Carr, M., Biddlecomb, B.: Metacognition in Mathematics from a Constructivist Perspective. In: Hacker, Douglas, Dunlosky, J., Graesser, A.C. (eds.) Metacognition in Educational Theory and Practice, pp. 69–91. Lawrence Erlbaum, Mahwah (1998)Google Scholar
  8. 8.
    Kim, Hee, J., Freedman, R., Glass, M., Evens, M.W.: Annotation of Tutorial Goals for Natural Language Generation (2004) (in preparation)Google Scholar
  9. 9.
    Freedman, R., Zhou, Y., Glass, M., Kim, J.H., Evens, M.W.: Using Rule Induction to Assist in Rule Construction for a Natural-Language Based Intelligent Tutoring System. In: Twentieth Annual Conference of the Cognitive Science Society, Madison, pp. 362–367 (1998a)Google Scholar
  10. 10.
    Freedman, R., Zhou, Y., Kim, J.H., Glass, M., Evens, M.W.: SGML-Based Markup as a Step toward Improving Knowledge Acquisition for Text Generation. In: AAAI 1998 Spring Symposium: Applying Machine Learning to Discourse Processing, pp. 114–117. AAAI Press, Stanford (1998b)Google Scholar
  11. 11.
    Person, N.K., Graesser, A.C., Kreuz, R.J., Pomeroy, V.: Simulating Human Tutor Dialog Moves in AutoTutor. International Journal of Artificial Intelligence in Education 12, 23–39 (2001)Google Scholar
  12. 12.
    Heffernan, N.T., Koedinger, K.R.: An Intelligent Tutoring System Incorporating a Model of an Experienced Human Tutor. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, p. 596. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Rosé, C.P., Jordan, P., Ringenberg, M., Siler, S., VanLehn, K., Weinstein, A.: Interactive Conceptual Tutoring in Atlas-Andes. In: Moore, J., Redfield, C.L., Johnson, W.L. (eds.) Artificial Intelligence in Education (Tenth International Conference, AIED-2001, San Antonio), pp. 256–266. IOS Press, Amsterdam (2001)Google Scholar
  14. 14.
    Mostow, J., Huang, C., Tobin, B.: Pause the Video: Quick but Quantitative Expert Evaluation of Tutorial Choices in a Reading Tutor that Listens. In: Moore, J., Redfield, C.L., Johnson, W.L. (eds.) Artificial Intelligence in Education (Tenth International Conference, AIED-2001, San Antonio), pp. 243–253. IOS Press, Amsterdam (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jung Hee Kim
    • 1
  • Michael Glass
    • 2
  1. 1.Dept. Computer ScienceNorth Carolina A&T State UnivGreensboroUSA
  2. 2.Dept. Math & CSValparaiso UniversityValparaisoUSA

Personalised recommendations