Functional Brain Image Analysis Using Joint Function-Structure Priors

  • Jing Yang
  • Xenophon Papademetris
  • Lawrence H. Staib
  • Robert T. Schultz
  • James S. Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

We propose a new method for context-driven analysis of functional magnetic resonance images (fMRI) that incorporates spatial relationships between functional parameter clusters and anatomical structure directly for the first time. We design a parametric scheme that relates functional and structural spatially-compact regions in a single unified manner. Our method is motivated by the fact that the fMRI and anatomical MRI (aMRI) have consistent relations that provide configurations and context that aid in fMRI analysis. We develop a statistical decision-making strategy to estimate new fMRI parameter images (based on a General Linear Model-GLM) and spatially-clustered zones within these images. The analysis is based on the time-series data and contextual information related to appropriate spatial grouping of parameters in the functional data and the relationship of this grouping to relevant gray matter structure from the anatomical data. We introduce a representation for the joint prior of the functional and structural information, and define a joint probability distribution over the variations of functional clusters and the related structure contained in a set of training images. We estimate the Maximum A Posteriori (MAP) functional parameters, formulating the function-structure model in terms of level set functions. Results from 3D fMRI and aMRI show that this context-driven analysis potentially extracts more meaningful information than the standard GLM approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., Frackowiak, R.S.J.: Statistical Parametric Maps in Functional Imaging: A General Linear Approach. Human Brain Mapping 2, 189–210 (1995)CrossRefGoogle Scholar
  2. 2.
    Descombes, X., Kruggel, F., von Cramon, D.Y.: Spatio-temporal fMRI Analysis Using Markov Random Fields. IEEE TMI 17(6), 1028–1039 (1998)Google Scholar
  3. 3.
    Hartvig, N.V., Jensen, J.L.: Spatial mixture modeling of fMRI data. Human Brain Mapping 11, 233–248 (2000)CrossRefGoogle Scholar
  4. 4.
    Woolrich, M.W., Jenkinson, M., Brady, J.M., Smith, S.M.: Fully Bayesian Spatio-Temporal Modeling of FMRI Data. IEEE TMI 23(2), 213–231 (2004)Google Scholar
  5. 5.
    Solo, V., Purdon, P., Weisskoff, R., Brown, E.: A Signal Estimation Approach to fMRI. IEEE TMI 20(1), 26–35 (2001)Google Scholar
  6. 6.
    Katanoda, K., Matsuda, Y., Sugishita, M.: A spatio-temporal regression model for the analysis of functional MRI data. NeuroImage 17, 1415–1428 (2002)CrossRefGoogle Scholar
  7. 7.
    Friston, K., Penny, W.: Posterior Probability maps and SPMs. NeuroImage 19(3), 1240–1249 (2003)CrossRefGoogle Scholar
  8. 8.
    Wang, Y., Schultz, R., Constable, R.T., Staib, L.H.: Nonlinear Estimation and Modeling of fMRI data using Spatio-temporal Support Vector Regression. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 647–659. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Goutte, C., Toft, P., Rostrup, E., Nielsin, F., Hansen, L.: On clustering fMRI time series. NeuroImage 9, 298–310 (1999)CrossRefGoogle Scholar
  10. 10.
    Salli, E., Aronen, H., Savolainen, S., Korvenoja, A., Visa, A.: Contextual Clustering for Analysis of Functional MRI Data. IEEE TMI 20(5), 403–414 (2001)Google Scholar
  11. 11.
    Kiebel, S., Goebel, R., Friston, K.: Anatomically Informed Basis Functions. NeuroImage 11, 656–667 (2000)CrossRefGoogle Scholar
  12. 12.
    Penny, W.D., Friston, K.J.: Mixtures of General Linear Models for Functional Neuroimaging. IEEE TMI 22(4), 504–514 (2003)Google Scholar
  13. 13.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi Formulation. J. Comp. Phy. 79, 12–49 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Studholme, C., Hill, D., Hawkes, D.: Automated Three-Dimensional Registration of Magnetic Resonance and Positron Emission Tomography Brain Images by Multiresolution Optimisation of Voxel Similarity Measures. Med. Phys. 24(1), 25–35 (1997)CrossRefGoogle Scholar
  15. 15.
    Yang, J., Duncan, J.: 3D Image Segmentation of Deformable Objects with Shape- Appearance Joint Prior Models. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 573–580. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jing Yang
    • 1
  • Xenophon Papademetris
    • 2
  • Lawrence H. Staib
    • 1
    • 2
  • Robert T. Schultz
    • 3
  • James S. Duncan
    • 1
    • 2
  1. 1.Department of Electrical EngineeringYale UniversityNew HavenUSA
  2. 2.Department of Diagnostic RadiologyYale UniversityNew HavenUSA
  3. 3.Child Study CenterYale UniversityNew HavenUSA

Personalised recommendations