Temporal Lobe Epilepsy Surgical Outcome Prediction

  • Simon Duchesne
  • Neda Bernasconi
  • Andrea Bernasconi
  • D. Louis Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)


We wished to study pre-operative T1-weighted MRI of intractable temporal lobe epilepsy (TLE) patients who had undergone selective amygdala-hippocampectomy as part of their surgical treatment. We performed a voxel-based morphometry study of gray and white matter (GM,WM) concentration changes by comparing TLE patients with positive and negative surgical outcome. GM concentration changes were primarily located in the left lateral temporal neocortical region, while more extensive changes were found in left lateral temporal and occipital WM. Using those areas to define a region of interest, we showed that mean GM and WM concentration for all voxels within that region can be used to predict surgical outcome with 97% accuracy.


Temporal Lobe Epilepsy Surgical Outcome Voxel-Based Morphometry Grey Matter Atrophy White Matter Atrophy Linear Discriminant Analysis 


  1. 1.
    Ashburner, J., et al.: Voxel-Based Morphometry: The Methods. NeuroImage 11, 805–821 (2000)CrossRefGoogle Scholar
  2. 2.
    Bernasconi, N., et al.: Voxel-based statistical analysis of grey matter and white matter in patients with unilateral temporal lobe epilepsy. NeuroImage 19(Suppl.1), 575 (2003)Google Scholar
  3. 3.
    Keller, S.S., et al.: Voxel-based morphometric comparison of hippocampal and extrahippocampal abnormalities in patients with left and right hippocampal atrophy. NeuroImage 16(1), 23–31 (2002)CrossRefGoogle Scholar
  4. 4.
    Woermann, K., et al.: Voxel-by-voxel comparison of automatically segmented cerebral gray matter - A rater-independent comparison of structural MRI in patients with epilepsy. NeuroImage 10(4), 373–384 (1999)CrossRefGoogle Scholar
  5. 5.
    Sled, J., et al.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE TMI 17, 87–97 (1998)Google Scholar
  6. 6.
    Collins, D., et al.: ANIMAL: validation and applications of non-linear registration based segmentation. IJPRAI 11, 1271–1294 (1997)Google Scholar
  7. 7.
    Zijdenbos, A., et al.: Morphometric analysis of white matter lesions in MR images: Method and Validation. IEEE TMI 13, 716–724 (1994)Google Scholar
  8. 8.
    Mazziotta, J., et al.: A probalistic atlas of the human brain: theory and rationale for its development. NeuroImage 2, 89–101 (1995)CrossRefGoogle Scholar
  9. 9.
    Worsley, K., et al.: Detecting changes in nonisotropic images. Human Brain Mapping  8, 98–101 (1999)Google Scholar
  10. 10.
    Good, C.D., et al.: A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage 14, 21–36 (2001)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Simon Duchesne
    • 1
  • Neda Bernasconi
    • 1
  • Andrea Bernasconi
    • 1
  • D. Louis Collins
    • 1
  1. 1.Montréal Neurological Institute (MNI)McGill UnivMontréalCanada

Personalised recommendations