Real-Time 4D Tumor Tracking and Modeling from Internal and External Fiducials in Fluoroscopy

  • Johanna Brewer
  • Margrit Betke
  • David P. Gierga
  • George T. Y. Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)


Fluoroscopy is currently used in treatment planning for patients undergoing radiation therapy. Radiation oncologists would like to maximize the amount of dose the tumor receives and minimize the amount delivered to the surrounding tissues. During treatment, patients breathe freely and so the tumor location will not be fixed. This makes calculating the amount of dose delivered to the tumor, and verifying that the tumor actually receives that dose, difficult. We describe a correlation-based method of tracking the two-dimensional (2D) motion of internal markers (surgical clips) placed around the tumor. We established ground truth and evaluated the accuracy of the tracker for 10 data sets of 5 patients. The root mean squared error in estimating 2D marker position was 0.47 mm on average. We also developed a method to model the average and maximum three-dimensional (3D) motion of the clips given two orthogonal fluoroscopy videos of the same patients that were taken sequentially. On average, the error was 3.0 mm for four pairs of trajectories. If imaging is possible during treatment, such motion models may be used for beam guided radiation; otherwise, they may be correlated to a set of external markers for use in respiratory gating.


Root Mean Square Radiat Oncol Biol Phys Intensity Modulate Radiation Therapy Average Root Mean Square Error Respiratory Gating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Forsyth, D.A., Ponce, J.: Computer Vision, A Modern Approach. Prentice Hall, NJ (2003)Google Scholar
  2. 2.
    Gierga, D.P., Sharp, G., Brewer, J., Betke, M., Willett, C., Chen, G.T.Y.: Correlation between external and internal markers for abdominal tumors: Implications for respiratory gating. In: Proceedings of the 45th Annual Meeting of the American Society for Therapeutic Radiology and Oncology, Salt Lake City, UT (October 2003); A journal version was submitted in (May 2004)Google Scholar
  3. 3.
    Haber, I., Metaxas, D.N., Axel, L.: Using tagged MRI to reconstruct a 3D heartbeat. Computing in Science and Engineering 2(5), 18–30 (2000)CrossRefGoogle Scholar
  4. 4.
    Keall, P.J., Kini, V.R., Vedam, S.S., Mohan, R.: Motion adaptative x-ray therapy: a feasibility study. Phys. Med. Biol. 46(1), 1–10 (2001)CrossRefGoogle Scholar
  5. 5.
    Kini, V.R., Vedam, S.S., Keall, P.J., Patil, S., Chen, C., Mohan, R.: Patient training in respiratory-gated radiotherapy. Med. Dosim 28(1), 7–11 (2003)CrossRefGoogle Scholar
  6. 6.
    Kubo, H.D., Len, P.M., Minohara, S., Mostafavi, H.: Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med. Phys. 27(2), 346–353 (2000)CrossRefGoogle Scholar
  7. 7.
    Mageras, G.S., Yorke, E., Rosenzweig, K., Braban, L., Keatley, E., Ford, E., Leibel, S., Ling, C.: Fluoroscopic evaluation of diaphragmatic motion reduction with a respiratory gated radiotherapy system. J. Appl. Clin. Med. Phys. 2(4), 191–200 (2001)CrossRefGoogle Scholar
  8. 8.
    Neicu, T., Shirato, H., Seppenwoolde, Y., Jiang, S.B.: Synchronized Moving Aperture Radiation Therapy (SMART): Average tumor trajectory for lung patients. Phys. Med. Biol. 48, 587–598 (2003)CrossRefGoogle Scholar
  9. 9.
    Rosenzweig, K.E., Hanley, J., Mah, D., Mageras, G., Hunt, M., Toner, S., Burman, C., Ling, C.C., Mychalczak, B., Fuks, Z., Leibel, S.A.: The deep inspiration breath hold technique in the treatment of inoperable non-small-cell lung cancer. Int J. Radiat. Oncol. Biol. Phys. 48(1), 81–87 (2000)CrossRefGoogle Scholar
  10. 10.
    Schweikard, A., Glosser, G., Bodduluri, M., Murphy, M.J., Adler, J.R.: Robotic motion compensation for respiratory movement during radiosurgery. Comput. Aided Surg. 5(4), 263–277 (2000)CrossRefGoogle Scholar
  11. 11.
    Seifalian, A.M., Hawkes, D.J., Hardingham, C.R., Colchester, A.C., Reidy, J.F.: Validation of a quantitative radiographic technique to estimate pulsatile blood flow waveforms using digital subtraction angiographic data. J. Biomed. Eng. 3(3), 225–233 (1991)CrossRefGoogle Scholar
  12. 12.
    Seppenwoolde, Y., Shirato, H., Kitamura, K., Shimizu, S., Van Herk, M., Lebesque, J.V., Miyasaka, K.: Precise and real-time measurement of 3d tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 53(4), 822–834 (2002)CrossRefGoogle Scholar
  13. 13.
    Shirato, H., Shimizu, S., Kitamura, K., Nishioka, T., Kagei, K., Hashimoto, S., Aoyama, H., Kunieda, T., Shinohara, N., Dosaka-Akita, H., Miyasaka, K.: Fourdimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor. Int. J. Radiat. Oncol. Biol. Phys. 48(2), 435–442 (2000)CrossRefGoogle Scholar
  14. 14.
    Shirato, H., Shimizu, S., Kunieda, T., Kitamura, K., van Herk, M., Kagei, K., Nishioka, T., Hashimoto, S., Fujita, K., Aoyama, H., Tsuchiya, K., Kudo, K., Miyasaka, K.: Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 48(4), 1187–1195 (2000)CrossRefGoogle Scholar
  15. 15.
    Vedam, S.S., Kini, V.R., Keall, P.J., Ramakrishnan, V., Mostafavi, H., Mohan, R.: Quantifying the predictability of diaphragm motion during respiration with a noninvasive external marker. Med. Phys. 30(4), 505–513 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Johanna Brewer
    • 1
  • Margrit Betke
    • 1
  • David P. Gierga
    • 2
  • George T. Y. Chen
    • 2
  1. 1.Computer Science DepartmentBoston UniversityBostonUSA
  2. 2.Radiation OncologyMassachusetts General HospitalBostonUSA

Personalised recommendations