Advertisement

Performance Evaluation of a Stereoscopic Based 3D Surface Localiser for Image-Guided Neurosurgery

  • Perrine Paul
  • Oliver Fleig
  • Sabine Tranchant
  • Pierre Jannin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

This paper reports the performance evaluation of a method for visualisation and quantification of intraoperative cortical surface deformations. This method consists in the acquisition of 3D surface meshes of the operative field directly in the neuronavigator’s coordinate system by means of stereoscopic reconstructions, using two cameras attached to the microscope oculars. The locations of about 300 surfaces are compared to the locations of two reference surfaces from a physical phantom: a segmented CT scan with image-to-physical fiducial-based registration, used to compute the overall system performance, and a cloud of points acquired with the neuronavigator’s optical localiser, used to compute the intrinsic error of our method. The intrinsic accuracy of our method was shown to be within 1mm.

Keywords

Surface Mesh Success Ratio Iterative Close Point Reference Surface Registration Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Edwards, P.J., et al.: Design and evaluation of a system for microscope-assisted guided interventions (MAGI). IEEE Trans. Med. Imaging 19(11), 1082–1093 (2000)CrossRefGoogle Scholar
  2. 2.
    Jannin, P., Bouliou, A., Journet, E., Scarabin, J.M.: A ray-traced texture mapping for enhanced virtuality in image-guided neurosurgery. Stud. Health. Technol. Inform. 29, 553–563 (1996)Google Scholar
  3. 3.
    Fleig, O.J., Devernay, F., Scarabin, J.M., Jannin, P.: Surface reconstruction of the surgical field from stereoscopic microscope views in neurosurgery. In: Proc. CARS 2001, pp. 259–264 (2001)Google Scholar
  4. 4.
    Skrinjar, O., Tagare, H., Duncan, J.: Surface growing from stereo images. In: IEEE CVPR 2000, vol. II, pp. 571–576 (2000)Google Scholar
  5. 5.
    Sun, H., et al.: Estimating cortical surface motion using stereopsis for brain deformation models. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 794–801. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Audette, M., Siddiqi, K., Peters, T.: Level-set surface segmentation and fast cortical range image tracking for computing intrasurgical deformations. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 788–797. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Jannin, P., et al.: Validation of medical image processing in image-guided therapy. IEEE Trans. Med. Imaging 21(11), 1445–1449 (2002)CrossRefGoogle Scholar
  8. 8.
    Devernay, F., Faugeras, O.: From projective to euclidean reconstruction. In: IEEE CVPR 1996, pp. 264–269 (1996)Google Scholar
  9. 9.
    Fitzpatrick, J.M., West, J.B., Maurer, C.R.: Predicting error in rigid-body, pointbased registration. IEEE Trans. Med. Imaging 17(5), 694–702 (1998)CrossRefGoogle Scholar
  10. 10.
    Maurer, C.R., Maciunas, R.J., Fitzpatrick, J.M.: Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans. Med. Imaging 17(5), 753–761 (1998)CrossRefGoogle Scholar
  11. 11.
    Hartkens, T., et al.: Measurement and analysis of brain deformation during neurosurgery. IEEE Trans. Med. Imaging 22(1), 88–92 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Perrine Paul
    • 1
  • Oliver Fleig
    • 1
  • Sabine Tranchant
    • 1
  • Pierre Jannin
    • 1
  1. 1.Laboratoire IDM, Faculté de MédecineUniversité de RennesRennesFrance

Personalised recommendations