Modelling Surgical Cuts, Retractions, and Resections via Extended Finite Element Method

  • Lara M. Vigneron
  • Jacques G. Verly
  • Simon K. Warfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)


We introduce a new, efficient approach for modelling the deformation of organs following surgical cuts, retractions, and resections. It uses the extended finite element method (XFEM), recently developed in “fracture mechanics” for dealing with cracks in mechanical parts. XFEM eliminates the computationally-expensive remeshing that would be required if the standard finite element method (FEM) was used. We report on the successful application of the method to the simulation of 2D retraction. The method may have significant impact on surgical simulators and navigators.


Boundary Element Method Biomechanical Model Meshless Method Surgical Simulation Nonrigid Registration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Meth. Engng. 46, 131–150 (1999)zbMATHCrossRefGoogle Scholar
  2. 2.
    Sukumar, N., Prévost, J.-H.: Modeling Quasi-Static Crack Growth with the Extended Finite Element Method. Part I: Computer Implementation. Internat. J. Solids Structures 40(26), 7513–7537 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Dolbow, J.E.: An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics. PhD Dissertation, Northwestern University (1999) Google Scholar
  4. 4.
    Ferrant, M., Nabavi, A., Macq, B., Kikinis, R., Warfield, S.: Serial registration of intra-operative MR images of the brain. Med. Image Anal. 6, 337–359 (2002)CrossRefGoogle Scholar
  5. 5.
    Verly, J.G., Vigneron, L.M., Petitjean, N., Martin, C., Hogge, M., Mercenier, J., Jamoye, V., Robe, P.A.: Nonrigid registration and multimodality image fusion for 3D image-guided neurochirurgical planning and navigation. In: Medical Imaging 2004, SPIE Proc., February 2004, vol. 5367 (2004)Google Scholar
  6. 6.
    Miga, M.I., Roberts, D.W., Kennedy, F.E., Platenik, L.A., Hartov, A., Lunn, K.E., Paulsen, K.D.: Modeling of Retraction and Resection for Intraoperative Updating of Images. Neurosurgery 49(1), 75–84 (2001)CrossRefGoogle Scholar
  7. 7.
    Serby, D., Harders, M., Székely, G.: A New Approach to Cutting into Finite Element Models. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 425–433. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Warfield, S.K., Kaus, M., Jolesz, F.A., Kikinis, R.: Adaptive, Template Moderated, Spatially Varying Statistical Classification. Med. Image Anal. 4(1), 43–55 (2000)CrossRefGoogle Scholar
  9. 9.
    Nienhuys, H.-W.: Cutting in deformable objects. PhD thesis, Institute for Information and Computing Sciences, Utrecht University (2003) Google Scholar
  10. 10.
    Duflot, M., Nguyen-Dang, H.: A meshless method with enriched weight functions for fatigue crack growth. Int. J. Numer. Meth. Engng. 59, 1945–1961 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Ecabert, O., Butz, T., Nabavi, A., Thiran, J.-P.: Brain Shift Correction Based on a Boundary Element Biomechanical Model with Different Material Properties. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 41–49. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Liu, H., Shi, P.: Meshfree Representation and Computation: Applications to Cardiac Motion Analysis. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 560–572. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Watson, J.O.: Boundary Elements from 1960 to the Present Day. Electronic Journal of Boundary Elements 1(1), 34–46 (2003)MathSciNetGoogle Scholar
  14. 14.
    Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Krysl, P.: Meshless methods: An overview and recent developments. Comput. Methods Appl. Mech. Engng. 139, 3–47 (1996)zbMATHCrossRefGoogle Scholar
  15. 15.
    Liu, G.R.: Mesh Free Methods: Moving Beyond the Finite Element Method. CRC Press, Boca Raton (2002)CrossRefGoogle Scholar
  16. 16.
    De, S., Hong, J.W., Bathe, K.J.: On the method of finite spheres in applications: towards the use with ADINA and in a surgical simulator. Comp. Mech. 31, 27–37 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Persson, P.-O., Strang, G.: A Simple Mesh Generator in MATLAB. SIAM Review 46(2), 329–345 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Vigneron, L., Verly, J., Warfield, S.: On Extended Finite Element Method (XFEM) for modelling of organ deformations associated with surgical cuts. In: Second International Symposium on Medical Simulation (June 2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Lara M. Vigneron
    • 1
  • Jacques G. Verly
    • 1
  • Simon K. Warfield
    • 2
  1. 1.Signal Processing Group, Dept. of Electrical Engineering and Computer ScienceUniversity of LiègeBelgium
  2. 2.Computational Radiology LaboratorySurgical Planning Laboratory, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations