Advertisement

Vessel Driven Correction of Brain Shift

  • Ingerid Reinertsen
  • Maxime Descoteaux
  • Simon Drouin
  • Kaleem Siddiqi
  • D. Louis Collins
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3217)

Abstract

In this paper, we present a method for correction of brain shift based on segmentation and registration of blood vessels from pre-operative MR images and intraoperative Doppler ultrasound data. We segment the vascular tree from both MR and US images and use chamfer distance maps and a non-linear registration algorithm to estimate the deformation between the two datasets. The method has been tested in a series of simulation experiments, and in a phantom study. Preliminary results show that we are able to account for large portions of the non-linear deformations and that the technique is capable of estimating shifts when only a very limited region of the brain is covered by the ultrasound volume.

Keywords

Phantom Study Thin Plate Spline Brain Shift Vessel Segmentation Brain Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nabavi, A., et al.: Serial intraoperative magnetic resonance imaging of brain shift. Neurosurgery 48(4), 787–798 (2001)CrossRefGoogle Scholar
  2. 2.
    Grønningsaeter, Å., et al.: Sonowand, an ultrasound-based neuronavigation system. Neurosurgery 47(6), 1373–1380 (2000)CrossRefGoogle Scholar
  3. 3.
    Arbel, T., Morandi, X., Comeau, R.M., Collins, D.L.: Automatic non-linear MRI-ultrasound registration for the correction of intra-operative brain deformations. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 913–922. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Borgefors, G.: Hierchical chamfer matching: A parametric edge matching algorithm. IEEE Trans. on PAMI 10(6), 849–865 (1988)Google Scholar
  5. 5.
    Collins, D.L., Evans, A.C.: ANIMAL: Validation and application of non-linear registration-based segmentation. IJPRAI 11(8), 1271–1294 (1997)Google Scholar
  6. 6.
    Roberts, D.W., et al.: Intraoperative brain shift and deformation: A quantitative analysis of cortical displacement in 28 cases. Neurosurgery 43(5), 749–760 (1998)CrossRefGoogle Scholar
  7. 7.
    Roberts, D.W., et al.: Intraoperatively updated neuroimaging using brain modeling and sparse data. Neurosurgery 45(5), 1199–1207 (1999)CrossRefGoogle Scholar
  8. 8.
    Descoteaux, M., Collins, D.L., Siddiqi, K.: A multi-scale geometric flow for segmenting vasculature in MRI. In: Proc. ECCV (2004)Google Scholar
  9. 9.
    A.R., et al.: Rigid registration of 3D ultrasound with MR images: A new approach combining intensity and gradient information. IEEE TMI 20(10), 1038–1049 (2001)Google Scholar
  10. 10.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Muliscale vessel enhancement filtering. In: Wells, W.M., Colchester, A.C.F., Delp, S.L. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998)Google Scholar
  11. 11.
    Hill, D.L., Maurer, C.R., Maciunas, R.J., Barwise, J.A., Fitzpatrick, J.M., Wang, M.Y.: Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery 43(3), 514–528 (1998)CrossRefGoogle Scholar
  12. 12.
    Miga, M.I., et al.: In vivo quantification of a homogeneous brain deformation model for updating preoperative images during surgery. IEEE BME 47(2), 266–273 (2000)CrossRefGoogle Scholar
  13. 13.
    Haberland, N., et al.: Neuronavigation in surgery of intracranial and spinal tumors. Journ. Canc. Res. Clin. Onc. 126, 529–541 (2000)CrossRefGoogle Scholar
  14. 14.
    Nimsky, C., Ganslandt, O., Hastreiter, P., Fahlbusch, R.: Intraoperative compensation for brain shift. Surgical Neurology 10, 357–365 (2001)CrossRefGoogle Scholar
  15. 15.
    Vasilevskiy, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE PAMI 24(12), 1565–1578 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Ingerid Reinertsen
    • 1
  • Maxime Descoteaux
    • 2
  • Simon Drouin
    • 1
  • Kaleem Siddiqi
    • 2
  • D. Louis Collins
    • 1
  1. 1.Montreal Neurological InstituteMcGill UniversityMontréalCanada
  2. 2.Center for Intelligent MachinesMcGill UniversityMontréalCanada

Personalised recommendations