Integrated Intensity and Point-Feature Nonrigid Registration

  • Xenophon Papademetris
  • Andrea P. Jackowski
  • Robert T. Schultz
  • Lawrence H. Staib
  • James S. Duncan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3216)

Abstract

In this work, we present a method for the integration of fea- ture and intensity information for non rigid registration. Our method is based on a free-form deformation model, and uses a normalized mu- tual information intensity similarity metric to match intensities and the robust point matching framework to estimate feature (point) correspon- dences. The intensity and feature components of the registration are posed in a single energy functional with associated weights. We com- pare our method to both point-based and intensity-based registrations. In particular, we evaluate registration accuracy as measured by point landmark distances and image intensity similarity on a set of seventeen normal subjects. These results suggest that the integration of intensity and point-based registration is highly effective in yielding more accurate registrations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cachier, P., Bardinet, E., Dormont, D., Pennec, X., Ayache, N.: Iconic feature based nonrigid registration: the PASHA algorithm. Computer Vision and Image Understanding 89, 272–298 (2003)MATHCrossRefGoogle Scholar
  2. 2.
    Christensen, G.E., Miller, M.I., Vannier, M.W.: Individualizing neuroanatomical atlases using a massively parallel computer. ComputerGoogle Scholar
  3. 3.
    Chui, H., Win, L., Schultz, R.T., Duncan, J.S., Rangarajan, A.: A unified non-rigid feature registration method for brain mapping. Medical Image Analysis 7(2), 113–130 (2003)CrossRefGoogle Scholar
  4. 4.
    Collins, D.L., Le Goualher, G., Evans, A.C.: Non-linear cerebral registration with sulcal constraints. In: Medical Image Computing and Computer Assisted Intervention, pp. 974–984. Springer, Berlin (1998)Google Scholar
  5. 5.
    Corouge, I., Barillot, C., Hellier, P., Toulouse, P., Gibaud, B.: Non-linear local registration of functional data. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 948–956. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Davatzikos, C.: Spatial transformation and registration of brain images using elastically deformable models. Comp. Vision and Image Understanding 66(2), 207–222 (1997)CrossRefGoogle Scholar
  7. 7.
    Feldmar, J., Malandain, G., Declerck, J., Ayache, N.: Extension of the ICP algorithm to non-rigid intensity-based registration of 3D volumes. In: Proc. Workshop Math. Meth. Biomed. Image Anal., pp. 84–93 (June 1996)Google Scholar
  8. 8.
    Friston, K.J., Ashburner, J., Poline, J.B., Frith, C.D., Heather, J.D., Frackowiak, R.S.J.: Spatial registration and normalization of images. Human Brain Mapping 2, 165–189 (1995)CrossRefGoogle Scholar
  9. 9.
    Hartkens, T., Hill, D.L.G., Castellano-Smith, A.D., Hawkes, D.J., Maurer Jr., C.R., Martin, A.J., Hall, W.A., Liu, H., Truwit, C.L.: Using points and surfaces to improve voxel-based non-rigid registration. In: Dohi, T., Kikinis, R. (eds.) MICCAI 2002. LNCS, vol. 2489, pp. 565–572. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Hellier, P., Barillot, C., Corouge, I., Gibaud, B., Le Goualher, G., Collins, D.L., Evans, A., Malandain, G., Ayache, N., Christensen, G.E., Johnson, H.J.: Retrospective evaluation of inter-subject brain registration. IEEE Transactions on Medical Imaging 22(9), 1120–1130 (2003)CrossRefGoogle Scholar
  11. 11.
    Liu, T., Shen, D., Davatzikos, C.: Deformable registration of cortical structures via hybrid volumetric and surface warping. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 780–787. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Papademetris, X., Jackowski, A., Schultz, R.T., Staib, L.H., Duncan, J.S.: Computing 3D non-rigid brain registration using extended robust point matching for composite multisubject fMRI analysis. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 788–795. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging (1999)Google Scholar
  14. 14.
    Thirion, J.P.: Image matching as a diffusion process: An analogy with maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)CrossRefGoogle Scholar
  15. 15.
    Toga, W.: Brain Warping. Academic Press, San Diego (1999)Google Scholar
  16. 16.
    Wang, Y., Staib, L.H.: Physical model based non-rigid registration incorporating statistical shape information. Med. Image Anal. 4, 7–20 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Xenophon Papademetris
    • 1
    • 2
  • Andrea P. Jackowski
    • 3
  • Robert T. Schultz
    • 2
    • 3
  • Lawrence H. Staib
    • 1
    • 2
  • James S. Duncan
    • 1
    • 2
  1. 1.Department of Biomedical EngineeringYale University New HavenUSA
  2. 2.Department of Diag. RadiologyYale University New HavenUSA
  3. 3.Child Study CenterYale University New HavenUSA

Personalised recommendations