Advertisement

Detecting Regional Abnormal Cardiac Contraction in Short-Axis MR Images Using Independent Component Analysis

  • A. Suinesiaputra
  • M. Üzümcü
  • A. F. Frangi
  • T. A. M. Kaandorp
  • J. H. C. Reiber
  • B. P. F. Lelieveldt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3216)

Abstract

Regional myocardial motion analysis is used in clinical routine to inspect cardiac contraction in myocardial diseases such as infarction or hypertrophy. Physicians/radiologists can recognize abnormal cardiac motion because they have knowledge about normal heart contraction. This paper explores the potential of Independent Component Analysis (ICA) to extract local myocardial contractility patterns and to use them for the automatic detection of regional abnormalities. A qualitative evaluation was performed using 42 healthy volunteers to train the ICA model and 6 infarct patients to test the detection and localization. This experiment shows that the evaluation results correlate very well to the clinical gold standard: delayed-enhancement MR images.

Keywords

Independent Component Analysis Shape Variation Independent Component Analysis Cardiac Contraction Shape Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kim, R., Wu, E., Rafael, A., et al.: The Use of Contrast-Enhanced Magnetic Resonance Imaging to Identify Reversible Myocardial Dysfunction. New England Journal of Medicine 343, 1445–1454 (2000)CrossRefGoogle Scholar
  2. 2.
    Hoyer, P.O., Hyvärinen, A.: Independent Component Analysis Applied to Feature Extraction from Colour and Stereo Images. Network: Computation in Neural System 11, 191–210 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Trans. on Neural Networks 13, 1450–1464 (2002)CrossRefGoogle Scholar
  4. 4.
    Üzümcü, M., Frangi, A.F., Reiber, J.H., Lelieveldt, B.P.: Independent Component Analysis in Statistical Shape Models. In: Sonka, M., Fitzpatrick, J.M. (eds.) Proc. of SPIE, vol. 5032, pp. 375–383 (2003)Google Scholar
  5. 5.
    Hyvärinen, A.: Survey on Independent Component Analysis. Neural Computing Surveys 2, 94–128 (1999)Google Scholar
  6. 6.
    Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. John Wiley & Sons, Chichester (2002)Google Scholar
  7. 7.
    Nadal, J.P., Korutcheva, E., Aires, F.: Blind Source Separation in the Presence of Weak Sources. Neural Network 13, 589–596 (2000)CrossRefGoogle Scholar
  8. 8.
    Hyvärinen, A., Särelä, J., Vígario, R.: Bumps and Spikes: Artifacts Generated by Independent Component Analysis with Insufficient Sample Size. In: Proc. Int. Workshop on ICA and BSS, pp. 425–249 (1999)Google Scholar
  9. 9.
    Cardoso, J., Souloumiac, A.: Blind Beamforming for Non Gaussian Signals. IEEE Proceedings -F 140, 362–370 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • A. Suinesiaputra
    • 1
  • M. Üzümcü
    • 1
  • A. F. Frangi
    • 2
  • T. A. M. Kaandorp
    • 1
  • J. H. C. Reiber
    • 1
  • B. P. F. Lelieveldt
    • 1
  1. 1.Division of Image Processing, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Computer Vision Group, Aragon Institute of EngineeringUniversity of ZaragozaZaragozaSpain

Personalised recommendations