Medical Image Segmentation Based on Mutual Information Maximization

  • Jaume Rigau
  • Miquel Feixas
  • Mateu Sbert
  • Anton Bardera
  • Imma Boada
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3216)

Abstract

In this paper we propose a two-step mutual information-based algorithm for medical image segmentation. In the first step, the image is structured into homogeneous regions, by maximizing the mutual information gain of the channel going from the histogram bins to the regions of the partitioned image. In the second step, the intensity bins of the histogram are clustered by minimizing the mutual information loss of the reversed channel. Thus, the compression of the channel variables is guided by the preservation of the information on the other. An important application of this algorithm is to preprocess the images for multimodal image registration. In particular, for a low number of histogram bins, an outstanding robustness in the registration process is obtained by using as input the previously segmented images.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernaola, P., Oliver, J.L., Román, R.: Decomposition of DNA sequence complexity. Physical Review Letters 83(16), 3336–3339 (1999)CrossRefGoogle Scholar
  2. 2.
    Butz, T., Cuisenaire, O., Thiran, J.-P.: Multi-modal medical image registration: from information theory to optimization objective. In: Proceeding of 14th International Conference on Digital Signal Processing (DSP 2002) (July 2002)Google Scholar
  3. 3.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Series in Telecommunications. Wiley, Chichester (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Kulkarni, S.R., Lugosi, G., Venkatesh, S.S.: Learning pattern classification – a survey. IEEE Transactions on Information Theory 44(6), 2178–2206 (1998)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Sethi, I.K., Sarvarayudu, G.P.R.: Hierarchical classifier design using mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence 4(4), 441–445 (1982)CrossRefGoogle Scholar
  6. 6.
    Slonim, N., Tishby, N.: Agglomerative information bottleneck. In: Proceedings of NIPS-12 (Neural Information Processing Systems), pp. 617–623. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    Studholme, C.: Measures of 3D Medical Image Alignment. PhD thesis, University of London, London, UK (August 1997) Google Scholar
  8. 8.
    Čapek, M., Mrož, L., Wegenkittl, R.: Robust and fast medical registration of 3D-multi-modality data sets. In: Proceedings of the International Federation for Medical and Biological Engineering, June 2001, vol. 1, pp. 515–518 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jaume Rigau
    • 1
  • Miquel Feixas
    • 1
  • Mateu Sbert
    • 1
  • Anton Bardera
    • 1
  • Imma Boada
    • 1
  1. 1.Institut d’Informatica i AplicacionsUniversitat de GironaSpain

Personalised recommendations